VRF Systems Design & Applications And Fan System Effects 0

0

By: Greg Drensky

What is VRF?

What is VRF?

- The ability to control the amount of refrigerant flowing to a series of evaporators in a common system
- Many evaporators of differing capacities and configurations
- Individualized comfort control
- Heating & Cooling system (Heat Pump)
- Potential to heat and cool simultaneously within the same system
- First Simultaneous Heat & Cool 1989

System Components

System Components

- Outdoor Unit
 - Variable Speed Fan
 - Inverter Driven Compressor
 - R-410a
- Indoor Unit
 - Multi-Speed Fan
 - Electronic Expansion Valve
- System Communications

			Size (K btu)						
Туре		Model	07	09	12	18	24	36	48
1 Way Cassette		**AHX52	v	V	V				
4 Way Cassette		**XHX52			V	V	V	V	
Concealed Duct	000	UHX**52	1		V	V	V	V	
Concealed Duct Medium Press.		DXH**52						V	V
Ceiling Suspended		THX**52			V	V	V		
Wall Mounted		KHX**52	V	V	V	V	V		•

Agenda Control Options

System Controller

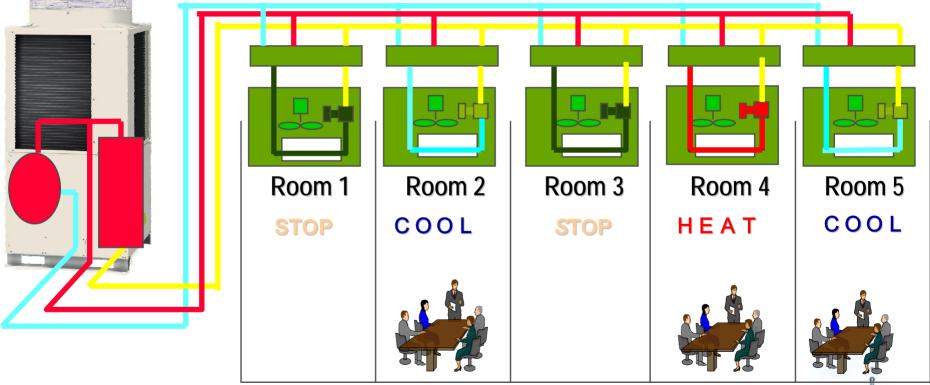
Intelligent Controller

OEM Protocol

Wired Controller

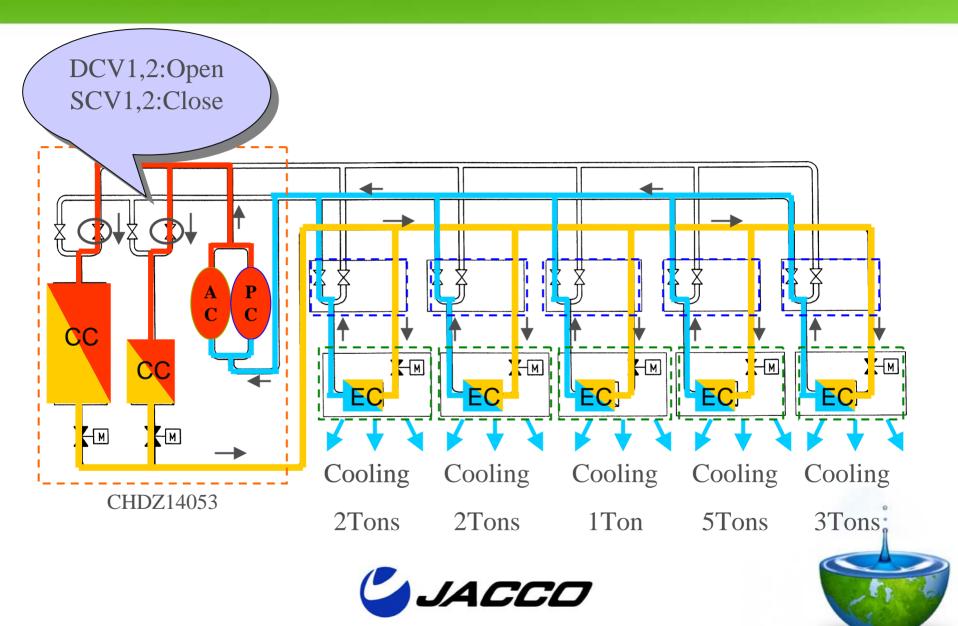
Wireless Controller

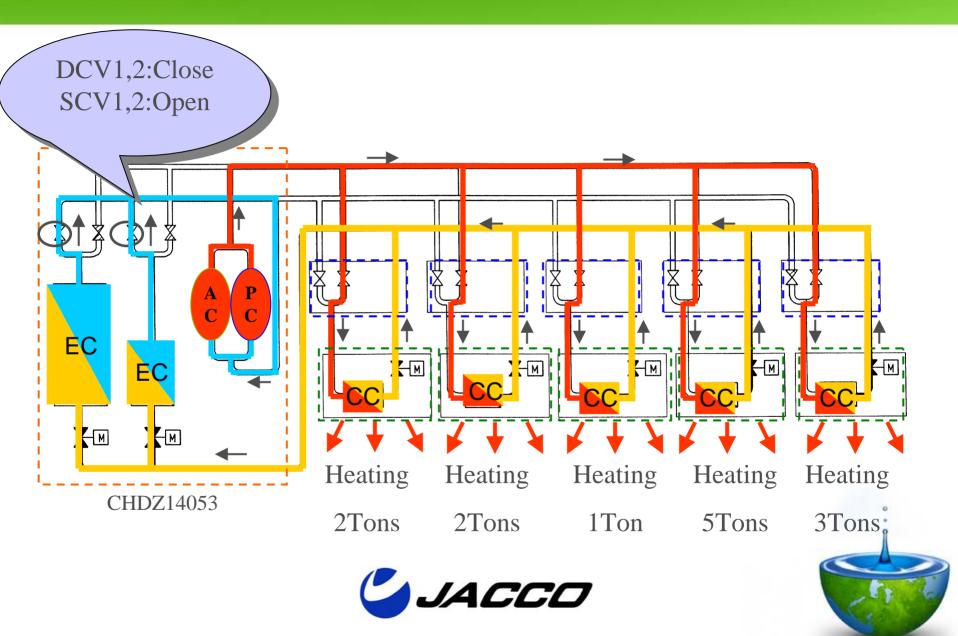

Simple Controller

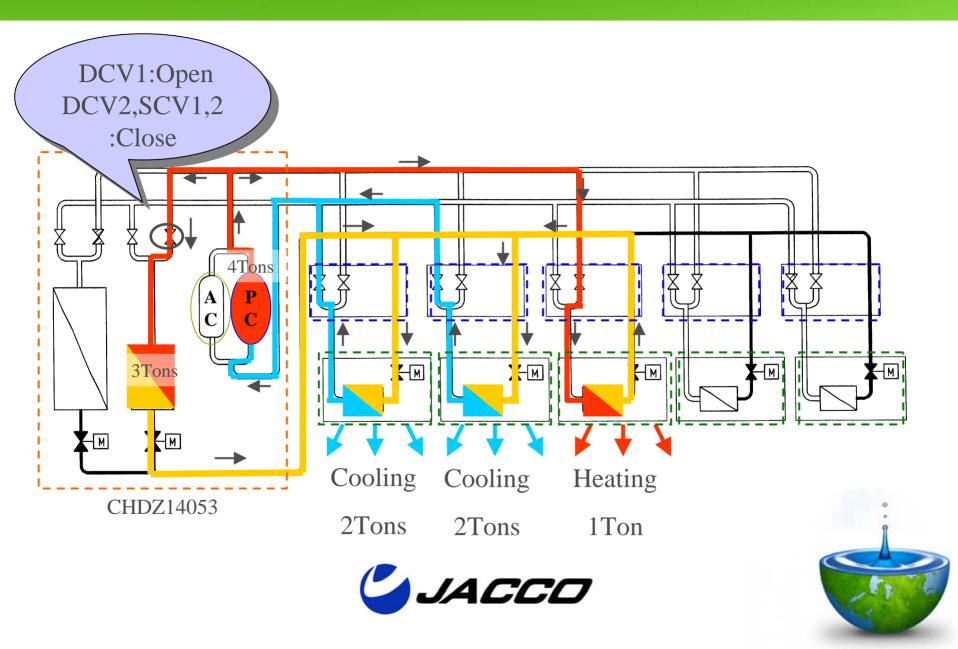


System Operation

System Operation

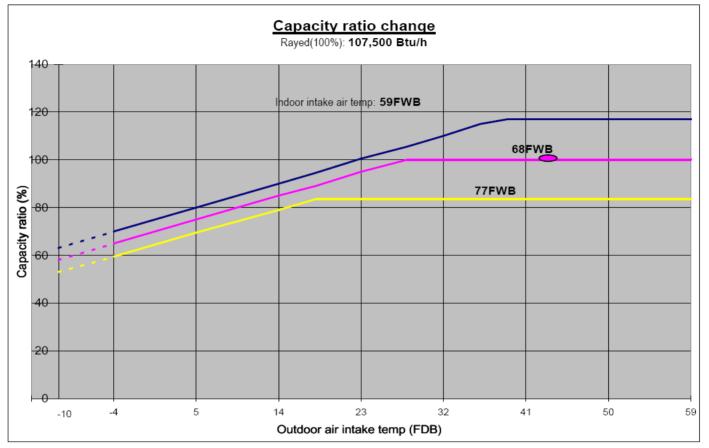



OUTDOOR UNIT



Heating Operation

104 deg F Discharge



Heating Operation

Indoor Heat Pump Option

Acoustics

Acoustics

- Low Noise Levels
 - -Heat Pumps 55dBa
 - -Fan Coils 22-47dBa

Sound Level Decibel Loudness Comparison Chart

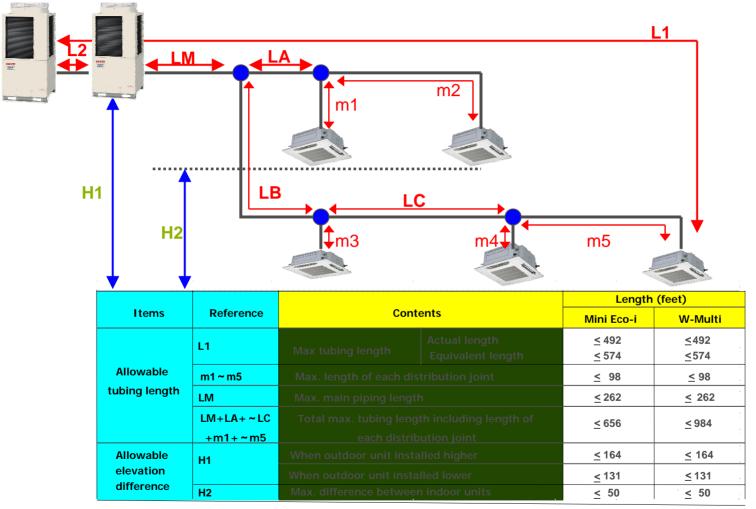
Environn	Environmental Noise					
Weakest sound heard	0dB					
Whisper Quiet Library	30dB					
Normal conversation (3-5')	60-70dB					
Telephone dial tone	80dB					
City Traffic (inside car)	85dB					
Train whistle at 500', Truck Traffic	90dB					
Subway train at 200'	95dB					

Economic Performance

Economic Performance: COP's

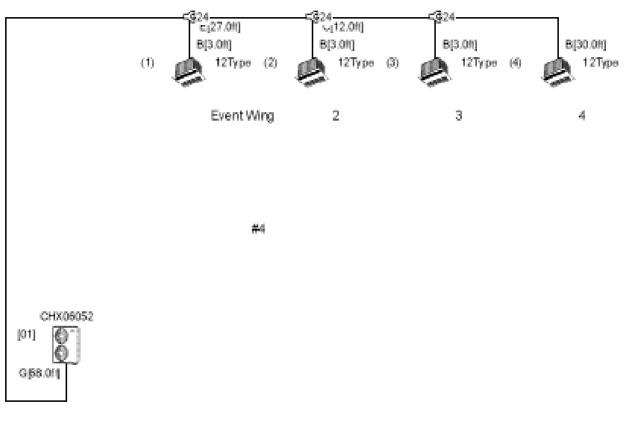
- Coefficient of Performance
 - -Ratio of energy output compared to energy input
- VRF Cooling COP: 6.3
 - Air Cooled CU: 2.8
 - Air Cooled Chiller: 2.8
 - Packaged RTU: 3.2
 - Packaged RTU with Energy Wheel: 3.8
 - Geothermal Heat Pumps: 4.5
- VRF Heating COP: 4 @ 25F (1.5 @ -10F)
 - Electric Heat: 1.0
 - Gas Heat: 0.92
 - Hot Water: 0.85

•System Modeling Programs Available (www.energysoft.com)


Preventative Maintenance

Preventive Maintenance

- Clean/Replace Filters
- Check Electrical Connections
- Clean Condensate Pan
- Blow Out Drain Lines
- Clean Condenser Coils
- Inspect Cabinets and Refrigerant Lines
- Check Motors
- Check Communication
- Check Operation
 - On-board Diagnostics



Refrigerant Tubing System Diagram						
Project Name	Potomac winery and Cellars	230∨	Page 1			
System Name	[01] System 01 [02] System 02	Capaci 91% 91%	ly Ratio of Indoor and Outdoor Units			

Limit Density			
[01] The room dimensions have not been entered.	Refrigerant Amount (12,408b) Room Area (0.013)		
[02] The room dimensions have not been entered.	Refrigerant Amount (11,016b) Room Area (0.013)		

Since Tees for narrow tube is exclusive design for Sanyo multi system, be sure to use optional joint kit. In case of "Tees+Adaptor", 3/4 to 5/8 or 3/4 to 1/2 adaptor to be needed. In 3Way system, connect liquid and suction tube to COOL ONLY indoor unit.

Code	Tubing Size	Quantity (1) / Additional Refrigerant Charge Amount (oz/l)						
0.040	(in)-	[0	1]	0]	2]			
BC L C	1/2 × 1/4 1/2 × 3/8 5/8 × 3/8 3/4 × 3/8	39.0 12.0 27.0 68.0	0.280 0.602 0.602 0.602	390 120 280 300	0.280 0.602 0.602 0.602			
Ac	dditional Charge Amount (cc)	75.	334	53.	060			

Code	Index Times	Medal Marca	Quantity (Units)				
0000	sound rype	Model Name	[01]	[02]			
⊂ 324	Distri. Joint Kit	APR-P160BA	3	з			

Code	Tubing Size		Quantity (ft) / Addition	al Refrig	eran	t Charge	e Arno	ount (oz/	fil)
0008	(in)	ര്വ	1]							
6	1/2 x 1/4	58.0	0.279							
С	1/2 x 3/8	27.0	0.602							
E	5/8 x 3/8	S4.0	0.602							
G	3/4 x 3/8	20.0	0.602							
J	7/B x 3/8	16.0	0.602							
м	1-1/B x 1/2	23.0	1.380							
w	1-1/B X 5/8	18.0	1.990							
	initial Charge Amount ditional Charge Amount (oz)	142.13%								
Cod	e Joint Type		Model 1				Quar	rtity (L	Jnite)	
0.04	e vant type		IN MARCELL	101110	[01]					
-32		APF	R-CHP680	BA	1					
-32	S Ditto	APF	R-P160B4		3					
-32		APF	APR-P580BA		4					
ы3		BV-			2					
ы 1-	4 Ditte	Field	d Supply		10					

Dedicated Outdoor Air Systems (DOAS)

0

DOAS

- Operable windows
- Aaon Dedicated Outdoor Air System

DOAS

- Common to following systems:
 - -VRF
 - -Geothermal
 - -Chilled Beams
 - -Radiant Cooling
- Provide neutral air to space
 - -Supply 70°F @ 50-55% RH
 - -Maintain RH per ASHRAE 62.1-2004
- Utilize VCC's & energy recovery wheels
- Single source filtration (VRF no zone to zone air mixing)

System Applications

01 April 2007 edition of ASHRAE Journal.

VRF systems, which were introduced in Japan more than **20 years** ago, has gradually expanded its market presence reaching European markets in 1987 and the US more recently. *In Japan, VRF systems are used in approximately 50% of medium-sized commercial buildings (up to 70,000 sq.ft) and one-third of large commercial buildings (more than 70,000 sq.ft.)*

Several thousand systems likely will be sold in the U.S. this year, amounting to **tens of thousands of tons** of capacity.

The success of the VRF in other countries, and its historically limited market presence in the U.S., has several sources, including:

* The long history and large installed base of ducted direct exchange (DX) systems ...

For Release: August 8, 2007 ATLANTA-

•Just completed, Ashrae's renovated Headquarters building in Atlanta features two separate HVAC systems as part of its role as living lab.

•Level one of the building features air-cooled multi-split variable refrigerant flow fan coil units with zoned inverter-driven outdoor heat pumps.

•ASHRAE plans to apply for a LEED Gold certification under the U.S. Green Building Council's Leadership in Energy and Environmental Design rating system.

System Applications

- Schools
- Churches
- High Rise Condos
- Multi Story Office Buildings
- Research Facilities
- Federal Buildings
- Hospitals

- Strip Malls
- Shopping Malls
- Residential -Townhouses
- Hotels and Motels
- Colleges
- Manufacturing Plants
- Apartments
- Shell & Core Projects: 50% total connected load

System Applications

Sample Projects

Sample Projects: Project B

12 Ton HP 5 Evaps

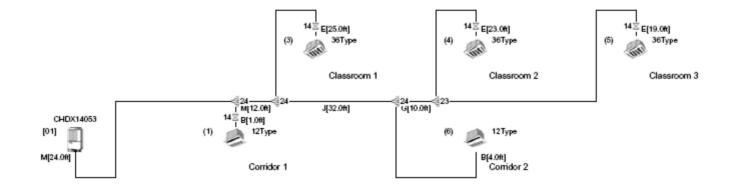
Total Pipe: 430' Total Refrigerant:42.3# 5.Piping

	Liquid / High (inch)	Gas / Low (inch)	Low Gas /Bypass/Oil (inch)	Total Length (feet)	Number of bent
First joint to Indoor unit	1/4	1/2	-	50	0
First joint to Indoor unit	3/8	5/8	-	125	0
Outdoor Unit to first joint	1/2	1 1/8	-	40	0

Summary totals

Pipe Size (inch)	Total Length (feet)	Number of bend
3/8	125	0
5/8	125	0
1/4	50	0
1/2	90	0
1 1/8	40	0

6. Water Flow Rate


Flow rate	Pressure drop

Additional refrigerant required:	R410A	x	13.7	lb	
Total refrigerant amount:	R410A	x	42.3	lb	

Sample Projects: Project B

Sample Projects: Project B

12 Ton HP 5 Evaps

Total Pipe: 150' Total Refrigerant: 9.8#

Savings: Pipe: 280' Refrigerant: 32.5#

Refrigerant Tubing System Diagram							
Project Name	St Mary's	230V	Page 1				
System Name	[01] System01	Capac 87%	ity Ratio of Indoor and Outdoor Units				

Limit Density

[01] The room dimensions have not been entered. Refrigerant Amount (35.918b) Room Area (0.0t3)

Since Tees for narrow tube is exclusive design for Sanyo multi system, be sure to use optional joint kit. In case of "Tees+Adaptor", 3/4 to 5/8 or 3/4 to 1/2 adaptor to be needed. In 3Way system, connect liquid and suction tube to COOL ONLY indoor unit.

Code	Tubing Size	Quantity (ft) / Additional Refrigerant Charge Amount (oz/ft)							
	(in)	[01]							
в	1/2 × 1/4	5.0	0.279						
E	5/8 x 3/8	67.0	0.602						
G	3/4 x 3/8	10.0	0.602						
J	7/8 x 3/8	32.0	0.602						
м	1-1/8 × 1/2	36.0	1.380						
Initial Charge Amount Additional Charge Amount (oz)			2 .693	•					

Code	Joint Type	Model Name	Quantity (Units)				
			[01]				
-⊜23 -⊚24 ⊠14	Distri. Joint Kit Ditto Ball Valve Kit	APR-P160BA APR-P680BA Field Supply	1 3 4				

Fan System Effects: Creating High Performance Air Handling Systems 0

0

By: Greg Drensky

System Static Pressure

System Static Pressure

Internal Pressure Drop

- -Dampers (inlet, discharge, fan isolation)
- -Air Mixers
- -Coils
- -Filters (Dirty)
- -Sound Attenuators
- -Energy Recovery Devices
- -Diffusers
- -Humidifiers
- -Desiccant Wheels
- -Airflow Measuring Stations

•External Static Pressure

- -Length Of Duct
- -Duct Size

- -# Turns, Types Of Turns (Turning Vanes?)
- -Discharge Direction
- -Diffusers
- -VAV Boxes (Single, Parallel, Series)
- -Reheat Coils

System Static Pressure

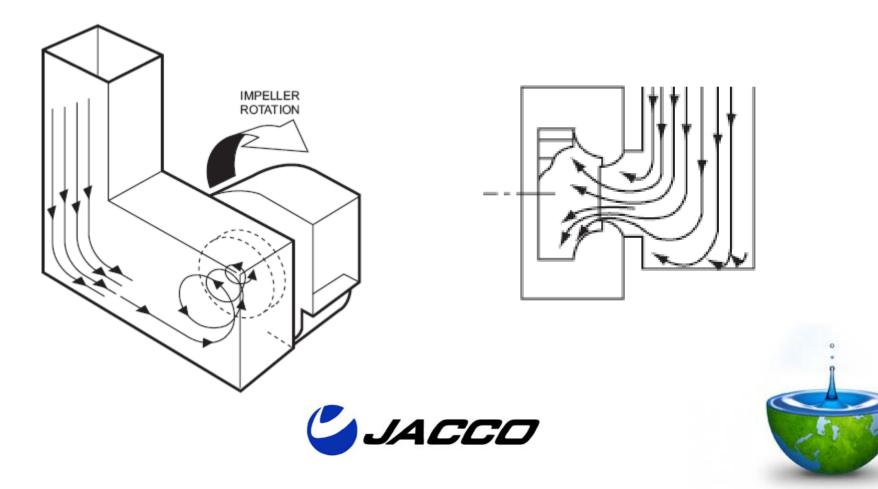
•Plenum fans max. about 10" - 55-65% efficient

- •Centrifugal fans max about 20" -65-75% efficient
- •Axial fans max. about 13" -75-85% efficient

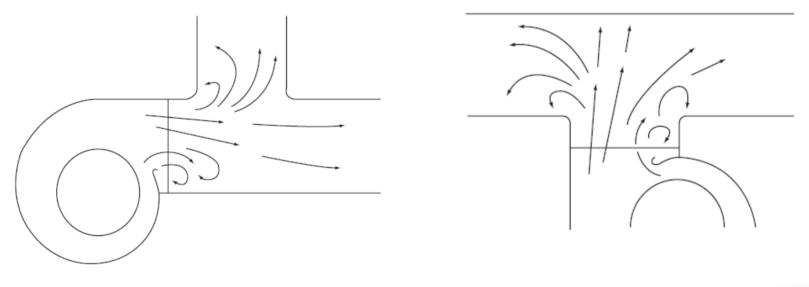
Belt Losses Can Account For Approximately 10% Loss In Efficiency

What Is Fan System Effect?

•Detrimental effect on fan air performance due to airflow disturbances in close proximity to the fan – either upstream or downstream

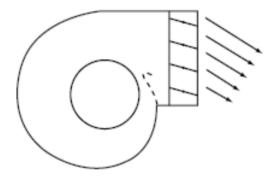


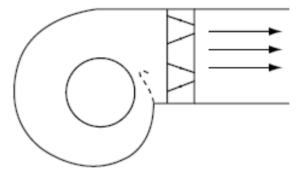
- •Air Movement & Control Assoc. (AMCA) Standard 201
- •Proper Straight Duct Length (Effective Length) For Uniform Velocity Profile
- Inline & Centrifugal Fans
 - -2.5 duct diameters for 2,500fpm or less
 - -Add 1 duct diameter for each additional 1,000fpm
- •Axial Fans
 - -3 duct diameters
- VaneAxial Fans
 - -10 duct diameters



Inefficient Design Or Installed Duct Fittings At Inlet
Insufficient Clearance Between Cabinet & Fan Inlet

•Inefficient Design Or Installed Duct Fittings At Outlet

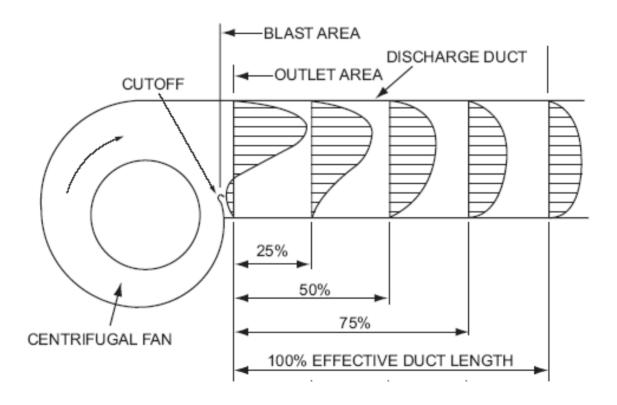




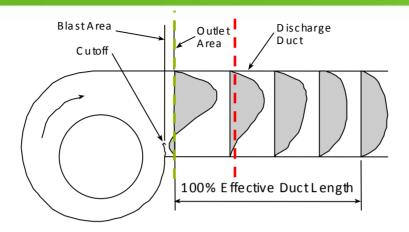
Fan System Effect Causes

Inlet & Discharge Dampers

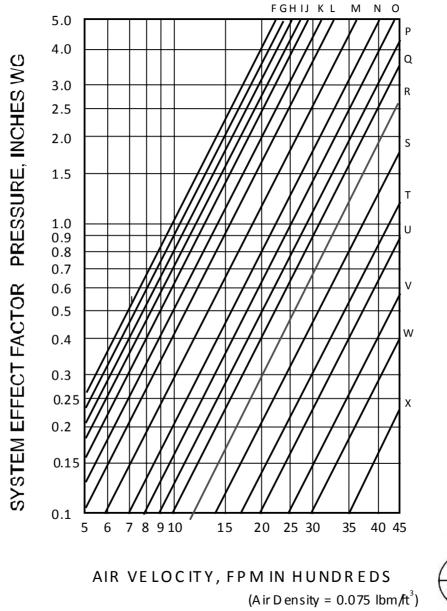
PARALLEL-BLADE DAMPER ILLUSTRATING DIVERTED AIRFLOW



OPPOSED-BLADE DAMPER ILLUSTRATING NON-DIVERTED AIRFLOW

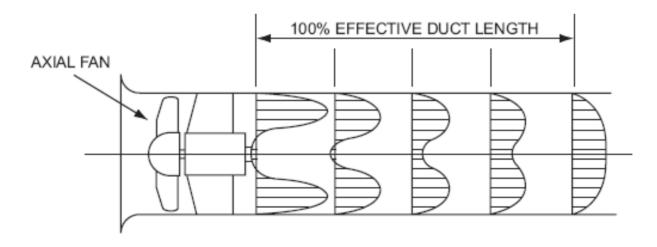

•Blast Area Vs. Outlet Area

Fan System Effect



	No Duct	12% Effective Duct	25% Effective Duct	50% E ffe ctiv e D uc t	100% E ffective Duct
Blast Area Outlet Area		Syst	em E ffect C	urve	
0.4	Р	R -S	U	W	
0.5	Р	R -S	U	w	
0.6	R-S	S -T	U-V	W-X	
0.7	S	U	W-X		
0.8	T-U	vw	Х		
0.9	W-W	W-X			
1.0					

Typical System Effect Curve



Fan System Effect Causes

•Fan Motors & Hubs

AXIAL FAN 10 DUCT DIAMETER

AMCA Standard Axial Fan Test Condition

Fan System Effect

- •Testing, Adjusting & Balancing Reports (TAB)
- •Point 1 Design Point
- •Point 2 Design Volume On Corrected System Curve
- Point 3 Deficient Volume On
 Original System Curve
- Point 4 Deficient Volume On Corrected System Curve

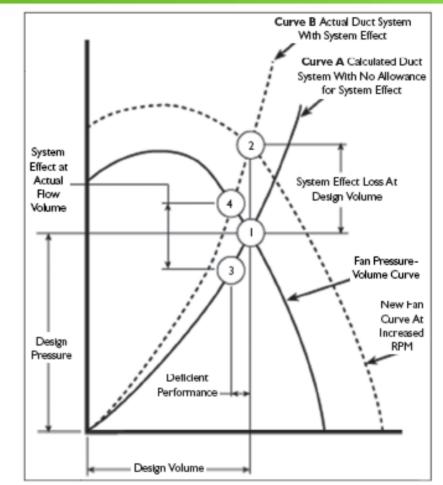


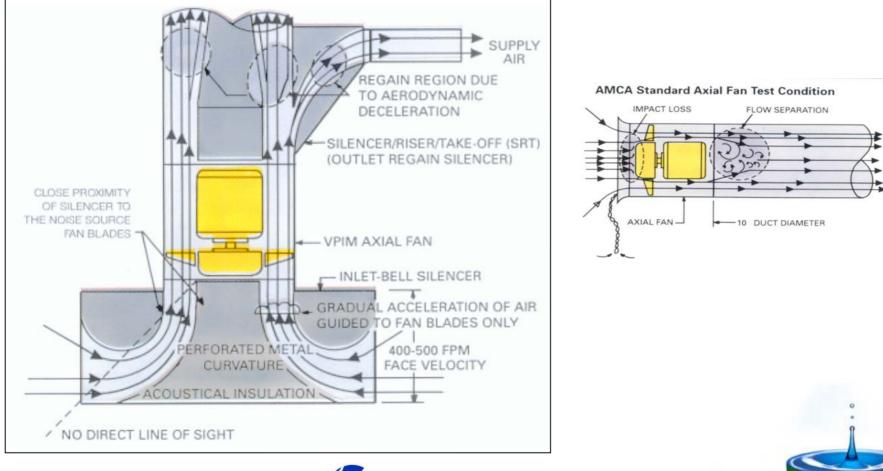
Figure 6: Deficient duct system performance—system effect ignored.

Fan System Effect Corrections At Design

•Take Care Designing Inlet & Outlet

- -Proper distances
- -Proper "swirl"
- -Laminar flow
- -Damper location & styles
- -Turning vanes, straighteners (still account for PD)
- •Account For System Effect Factor (SEF)
 - -Select fan to include additional SEF pressure drop
 - -Must account for both inlet & outlet pressure drop
- •Include SEF In Fan Schedule
 - -Explicitly accounts for SEF for all SEF factors
 - -Manufacturer to account for variations to meet performance

- •Increase RPM Of Fan
- Increase Motor Size
- Increase Fan Size
- •Increase Electrical (Wiring, Fusing, Disconnect, etc.)
- •Alter Ductwork
- •Add Sound Attenuators???

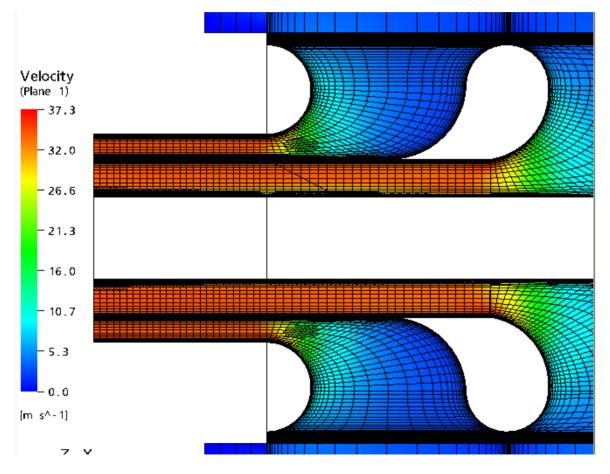


Airflow Efficiency

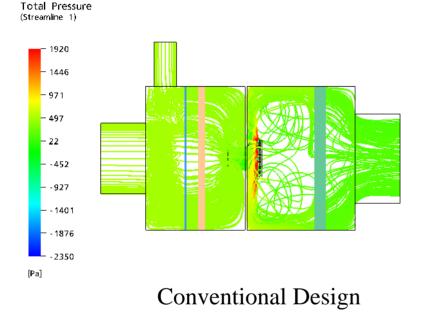
Airflow Efficiency

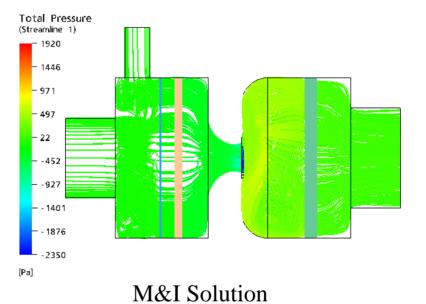
•Begins With Engineering

Total Pressure = Static Pressure + Velocity Pressure


- Velocity Regain
 - -Conversion Velocity Pressure To Static Pressure Through Deceleration
- •Created Through "Diffuser" or Evase
- •Efficiency Of Conversion Based On:
 - -Angle of expansion
 - -Length
 - -Blast/Outlet area ratio

Airflow Efficiency


•Computational Fluid Dynamics (CFD)



Airflow Efficiency

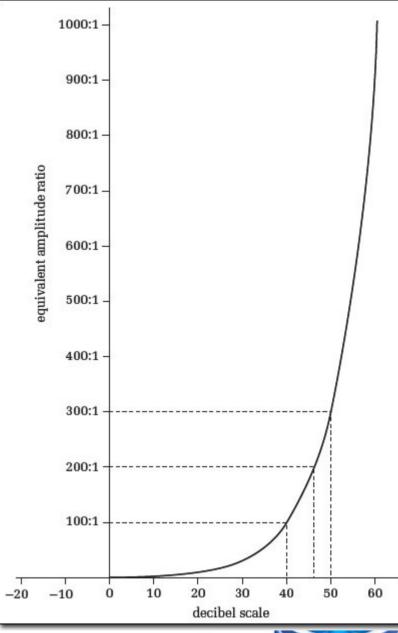
Total Pressure Distribution Across the Models

•Additional Benefits:

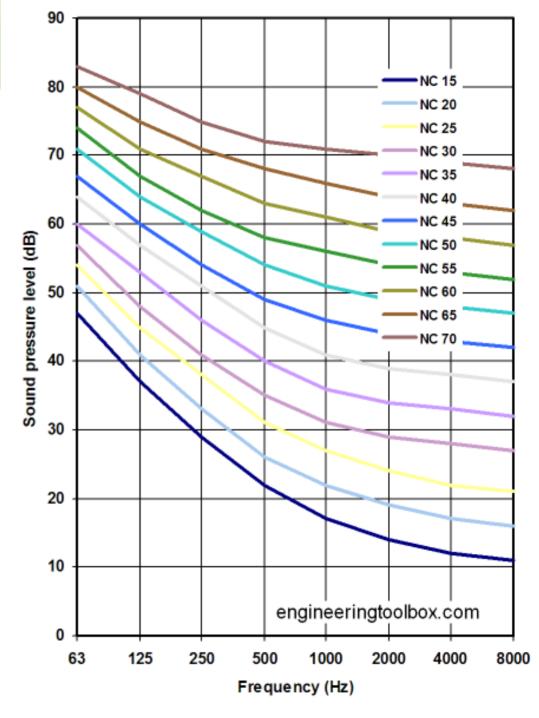
- -Filter Loading
- -Moisture Carryover

–Freezestat Trips–Sound & Vibration

Airflow Efficiency Examples

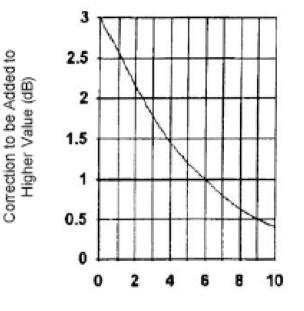


•Decibels (dB)


- -Logarithmic Measurement
- -0 dB Is Lowest Audible Sound To Human Ear (Near Total Silence)
- $-10 \times \text{Silence} = 10 \text{dB}$
- $-100 \times \text{Silence} = 20 \text{dB}$
- $-1,000 \times \text{Silence} = 30 \text{dB}$

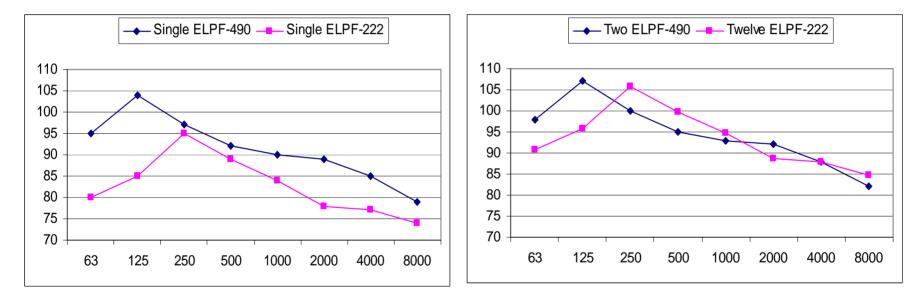
- •Used For Rating Indoor Noise
- •NC-10 Virtually Impossible To Hear
- •M&I Can Achieve NC-15•Highest Single Value Over 8 Octave Bands
- •Don't Know If Noise Will Be "Rumble" or "Hiss"

•Acceptable / Comparable dB & NC levels


	Type of Room - Occupancy	Noise Criterion - NC -	Noise Rating - NR -	db(A)
	Concert and opera halls, recording studios, theaters, etc.	10 - 20	20	25 - 30
Very quiet	Private bedrooms, live theaters, television and radio studios, conference and lecture rooms, cathedrals and large churches, libraries, etc.	20 - 25	25	25 - 30
	Private living rooms, board rooms, conference and lecture rooms, hotel bedrooms	30 - 40	30	30 - 35
Quiet	Public rooms in hotels, small offices classrooms, courtrooms	30 - 40	35	40 - 45
Moderate noisy	Drawing offices, toilets, bathrooms, reception areas, lobbies, corridors, department stores, etc.	35 - 45	40	45 - 55
Noisy	Kitchens in hospitals and hotels, laundry rooms, computer rooms, canteens, supermarkets, office landscape, etc.	40 - 50	45	45 - 55

- •Decibel Addition
- •More Equal In dB Level, Greater Value
- •2 Fans At Equal dB = +3dB
- •10 x LOG(# Fans)

ARI Standard 885-2008


Difference in Decibels Between Two Values Being Added (dB)

But after you account for the total quantity of fans with the acoustical relationship for multiple identical sound sources, single-fan PWL + 10*LOG(N), there is no significant advantage.

Dual fan pair (2 x 490), 10*LOG(2) = +3dB per octave band 12-fan Array (10 x 222), 10*LOG(12) = +11dB per octave band

Delivering the same 72KCFM at 5" TSP, both the dual '490s and the array of twelve '222s have the *same* overall unweighted sound PWL: 108-109 dB.

Creating High Performance HVAC Systems 0

0

Creating High Performance HVAC Systems

•Air Handler Is Extremely Important, But Don't Forget Other Components:

- -Chiller Size Reduction
- -Pipe Size Reduction
- -Pump Size Reduction
- -VFD Size Reduction
- -Generator Size Reduction

System Energy Savings

- •Hospital Project in Akron, OH
- •Base of Design Fan Array With 950 total hp
- •Compac Vaneaxial Design 790 total hp
- •Savings 160 hp
- •Assuming 24/7/365 Operation at \$0.10
- •Yearly Operational Savings: \$112,400
- •Present Day Value Over 15 Years: \$1,450,000
- Does Not Include Demand Charge Savings, Chiller/Pump Reductions

For More Information on VRF or Fan System Effects, please contact:

Greg Drensky Vice President Jacco & Associates 61 Milford Dr. Hudson, OH 44236 Office: (330) 463-0100, ext. 126 Email: gregd@jacco.com

Thank You