Estimating the Cost of Compressed Air Systems Leaks

Industrial Energy Efficiency Solutions Thursday, March 24th from 9:00-11:00 am Tim Stearns

Industrial Compressed Air Systems

Compressed air is used widely throughout industry and is often considered the "fourth utility" at many facilities. Almost every industrial plant, from a small machine shop to an immense pulp and paper mill, has some type of compressed air system.

Compressed air is an important medium for transfer of energy in industrial processes and is used for power tools such as air hammers, drills, wrenches and others, as well as to atomize paint, to operate air cylinders for automation, and various pneumatics.

How much does compressed air cost?

Source: https://www.surkontools.com/inline-pneumatic-torque-wrenches

Compressed air is expensive to make. The average compressed air systems operate at an average of 20kW/100 CFM. In dollars, that's approximately \$2.00 for every 100 CFM used every hour.

One of the companies I am working with right now uses \$5.2M in electricity annually and \$602K of that is compressed air (**11%**).

Leaks in compressed air systems can waste thousands of dollars of electricity per year

Source: https://blog.exair.com/2021/07/12/determining-leakage-rate-and-cost-of-compressed-air-leaks/

In fact, in many plants, the leakage can account for up to 30% of the total operational cost of the compressor. Some of the most common areas where you might find a leak would be at connection joints like valves, unions, couplings, fittings, etc. This not only wastes energy, but it can also cause the compressed air system to lose pressure which reduces the end use product's performance.

Energy conservation measures for a typical compressed air system.

Leak reduction and repair ranks highest for potential energy savings and cost effectiveness.

Leaks are calculated based on the size of the leak

Leakage rates ¹ (cfm) for different supply pressures and approximately equivalent orifice sizes									
Pressure (psig)	Orifice Diameter (inches)								
	1/64	1/32	1/16	1/8	1/4	3/8			
70	0.3	1.2	4.8	19.2	76.7	173			
80	0.33	1.3	5.4	21.4	85.7	193			
90	0.37	1.5	5.9	23.8	94.8	213			
100	0.41	1.6	6.5	26.0	104	234			
125	0.49	2.0	7.9	31.6	126	284			

¹For well-rounded orifices, multiply the values by 0.97, and for a sharp-edged orifice, multiply the values by 0.61.

Courtesy of: U.S. Department of Energy, Dec. 2000 Tip #3

Compressed air system leaks are typically at fittings and valves.

- 1. Determine how many leaks you have
- 2. Estimate the size of the leaks.

General rule of thumb is that leaks average 3 CFM each = \$450 per year for each leak.

- One way to estimate how much leakage a system has is to turn off all of the point-of-use devices and pneumatic tools, then start the compressor and record the average time it takes for the compressor to cycle on and off. The total percentage of leakage can be calculated as follows:
- Percentage = [(T x 100) / (T + t)]
- T = on time in minutes
- t = off time in minutes

Another method to calculate the amount of leakage in a system is by using a downstream pressure gauge from a receiver tank. You would need to know the total volume in the system at this point though to accurately estimate the leakage. As the compressor starts to cycle on, you want to allow the system to reach the nominal operating pressure for the process and record the length of time it takes for the pressure to drop to a lower level.

Formula:

- (V x (P1 P2) / T x 14.7) x 1.25
- V= Volumetric Flow (CFM)
- P1 = Operating Pressure (PSIG)
- P2 = Lower Pressure (PSIG)
- T = Time (minutes)
- 14.7 = Atmospheric Pressure
- 1.25 = correction factor to figure the amount of leakage as the pressure drops in the system

Estimate the total size of the leaks throughout the plant based on an air study.

In this example, on Friday afternoon the plant shuts down; but the compressed air system is not shut off until noon on Saturday. In the meantime, compressor is still sending 60 CFM out to the plant and drawing 40 kW. The system is potentially wasting \$33,200 in compressed air annually.

Sanity check: the potential air leaks represent 12% of total.

Estimate the total size of the leaks throughout the plant based on an air study.

In this example, ~15% of the time the compressed air system is delivering between 0 to 200 CFM.

Total SCFM (Data is smoothed as a 5-minute running average)

Estimate the total size of the leaks throughout the plant based on an air study.

From the Demand Flow Distribution Curve graphic on the previous slide, we observed that 15.52% of the time the compressed air system is delivering between 0 to 200 CFM.

But the average CFM in this bin is actually only 0.2CFM.

This compressed air system has virtually no leaks.

SCFM	Average	Percentage	Hrs/Week	Cumulative %
0-200	0.2	15.52	26.1	15.5
200-400	291.6	0.03	0.1	15.6
400-600	495.6	0.03	0.1	15.6
600-800	753.4	0.17	0.3	15.7
800-1000	939.7	2.50	4.2	18.3
1000-1200	1,134.3	15.82	26.6	34.1
1200-1400	1,311.4	14.78	24.8	48.9
1400-1600	1,531.3	32.43	54.5	81.3
1600-1800	1,669.7	13.81	23.2	95.1
1800-2000	1,824.8	4.91	8.2	100.0

Estimate the total size of the leaks throughout the plant based on an air study.

This air study provided us with a bin analysis of CFM used and annual hours in each bin. At this plant, they run their system only 2700 hours per year and there is never a time when the plant uses less than 210 CFM.

Air leaks for this plant are estimated to be between 103,950 CFM and 623,700CFM annually or between \$1,975 and \$11,850.

Estimate is based on industry averages: 5-30% of air is lost due to leaks.

Hours per year	CFM	TOTAL	COST
300	1,050	315,000	\$ 6,300
282	998	281,647	\$ 5,633
265	945	250,147	\$ 5,003
247	893	220,500	\$ 4,410
229	840	192,706	\$ 3 <i>,</i> 854
212	788	166,765	\$ 3,335
194	735	142,676	\$ 2,854
176	683	120,441	\$ 2,409
159	630	100,059	\$ 2,001
141	578	81,529	\$ 1,631
124	525	64,853	\$ 1,297
106	473	50,029	\$ 1,001
88	420	37,059	\$ 741
71	368	25,941	\$ 519
53	315	16,676	\$ 334
35	262	9,265	\$ 185
18	210	3,706	\$ 74
0	157	0	\$ 0
2,700	total annual use	2,079,000	\$ 41,580

Estimate the total size of the leaks throughout the plant based on a calculation of total air using an estimated bin analysis.

When multiplied against the total operating hours and full load kW for a given compressor system, the result is a reliable estimate of any small compressor's annual energy consumption.

Load	# Hours	Hours per year	CFM	TOTAL	TAL COST 8,		8,760	0 Facility Hours of Operat	
100%	6%	533	2,000	1,066,000	\$	21,320	2000	Max Capacit	y (CFM)
95%	6%	504	1,900	957,600	\$	19,152			
90%	12%	1,021	1,800	1,837,800	\$	36,756			
85%	4%	357	1,700	606,900	\$	12,138			
80%	5%	440	1,600	704,000	\$	14,080			
75%	9%	792	1,500	1,188,000	\$	23,760			
70%	5%	454	1,400	635,600	\$	12,712			
65%	8%	730	1,300	949,000	\$	18,980			
60%	5%	453	1,200	543,600	\$	10,872			
55%	9%	798	1,100	877,800	\$	17,556			
50%	6%	543	1,000	543,000	\$	10,860			
45%	5%	459	900	413,100	\$	8,262			
40%	4%	392	800	313,600	\$	6,272			
35%	6%	555	700	388,500	\$	7,770			
30%	4%	386	600	231,600	\$	4,632			
25%	2%	186	500	93,000	\$	1,860			
20%	2%	155	400	62,000	\$	1,240			
15%	0%	2	300	600	\$	12			
10%	0%	0	200	-	\$	-			
5%	0%	0	100	-	\$	-			
			total annual use	11,411,700	\$	228,234			
			ass		1,711,755	CFM			

		MODEL DATA - FOR COMPRES	SED AIR		7
1	Manufacturer:	Gardner Denver			1
	Model Number:	L132(F)-110#	Date:	12/17/2021	
2	X Air-cooled	Water-cooled	Type:	Screw	
			# of Stages:	1	
3*	Rated Capacity at Full Lo	ad Operating Pressure ^{a, e}	834.9	acfm ^{a,e}	
4*	Full Load Operating Press	ure ^b	100	psig ^b	7
5	Maximum Full Flow Ope	rating Pressure c	117	psig ^c	
6	Drive Motor Nominal Rat	ing	180	hp	
7	Drive Motor Nominal Eff	ciency	95.4	percent	7
8	Fan Motor Nominal Ratin	g (if applicable)	8.8	hp	7
9	Fan Motor Nominal Effic	ency	91	percent	1
10*	Total Package Input Powe	r at Zero Flow ^e	45.3	kW ^e	-
11	Total Package Input Powe	r at Rated Capacity and Full Load	150.21	kW^d	
12*	Package Specific Power a Pressure ^e	Rated Capacity and Full Load Operating	17.99	kW/100 cfm ^e	1
13	Isentropic Efficiency		73.87	Percent	7
*For mod Consult NOTES	lels that are tested in the CAGI CAGI website for a list of partic : : a. Measured at the disci ISO 1217, Annex C; b. The operating pressu for this data sheet. c. Maximum pressure a	Performance Verification Program, these items are ipants in the third party verification program: arge terminal point of the compressor package in accon ACFM is actual cubic feet per minute at intel conditions e at which the Capacity (Item 3) and Electrical Consum tainable at full flow, usually the unload pressure setting	verified by the third party a <u>www.cagi.org</u> dance with ption (Item 11) were measure for load/no load control or the	dministrator. d	_
r & Gas Institute	d. Total package input p e. Tolerance is specified <u>NOTE: The terms "r</u>	tamatic before capacity control begins. May require ad ower at other than reported operating points will vary w i in ISO 1217, Annex C, as shown in table below: ower" and "energy" are synonymous for purposes of thi	vitto nai power. vith control strategy. s. document.		
		Volume Flow Rate at specified conditions	Volume Flow Rate	Specific Energy Consumption	No Load / Zero Power
nber	m ³ /min	<u>ft³ / min</u>	%	%	%
	Below 0.5	Below 17.6	+/- 7	+/- 8	
	0.5 to 1.5	17.6 to 53	+/- 6	+/- 7	+/- 10%
	1.5 to 15	53 to 529.7	+/- 5	+/- 6	

CCCC [®]

To use the estimated load method, you need to know the amount of air used.

The size of the system can be estimated based on the size of the air compressors. This data is available from CAGI data sheets.

If the compressor system has been sized properly, then the max load on the system will be close to the 100% capacity of the compressors.

The size of the opportunity can also be estimated based on the energy use of the compressed air system.

For the company I am working with right that now uses \$602K in electricity annually for their compressed air system, savings is estimated to be between \$30K (5%) and \$180K (30%).

Case Study #1

- Customer has 2 machines with a total capacity of 640 CFM.
- Based on the air study, this customer uses 4,739,131 CFM annually.
- In-house leak repair resulted in 15% reduction in leaks.
- Annual cost savings of \$13,500

Compressor Performance Summary									
Compressor Information	Ful	l Load Ra	ntings	Performance Summary					
Name, Manufacturer, Model, Nominal Power, Control Type	Full Load Flow	Rated Pressure	Full Load Package Power	% Run Time	Average Flow*	Average Pressure*	Average Power*	Measured Efficiency*	Annual Energy Cost**
Sullair SN7507S Sullair SN7507S AC 100.00 HP Variable Displacement	500 ACFM	100 Psig	89.4 kW	100%	420.7 SCFM	105.9 Psig	79.8 kW / 106.9 HP	19 kW/ 100 SCFM	\$90,569
Sullair 2207 Sullair 2207 30.00 HP Inlet Modulation With Blow Down	140 ACFM	100 Psig	27.7 kW	100%	121.8 SCFM	105.9 Psig	27.3 kW / 36.6 HP	22.4 kW/ 100 SCFM	\$30,978
Total (System)	640 ACFM	N/A	117.1 kW	100%	542.4 SCFM	105.9 Psig	107 kW / 143.5 HP	19.7 kW/ 100 SCFM	\$121,547
* Averages include data only when compressor was running				**Annual Energy Cost does not include demand charges					es

Case Study #2

- Customer has 3 machines with a total capacity of 2,121 CFM.
- Customer had no air study or other calculated estimate of potential savings.
- In-house leak repair resulted in 18% reduction in leaks.
- Customer was able to remove one compressor from the system.
- Annual cost savings of \$32,180

Questions?

Estimating the Cost of Compressed Air Systems Leaks

Tim Stearns

tstearns@EfficiencySmart.org

Industrial Energy Efficiency Solutions Thursday, March 24th from 9:00-11:00 am

