

DOAS Solutions

Life's Good

E-mail

DOAS Solutions

- Agenda
 - DOAS definition
 - Code requirements
 - DOAS system types
 - Energy studies
 - Case studies
 - Best practices
 - Mistakes to avoid

DOAS Definition DEDICATED OUTDOOR AIR SYSTEMS

ASHRAE Definition

"A dedicated outdoor air system (DOAS) uses separate equipment to condition all of the outdoor air brought into a building for ventilation... and delivers it to each occupied space, either directly or in conjunction with local or central HVAC units serving those same spaces."

"ASHRAE Design Guide for Dedicated Outdoor Air Systems." 2017, 1-2.

DOAS Definition

PACKAGED DOAS

SPLIT DOAS

Terminology

- DOAS
 - Unit providing all of the prescribed outdoor air to a single zone or to multiple zones
- Common DOAS names:
 - ERV
 - ERU
 - MUA
 - DOA
 - OAU
 - AHU

Why use DOAS?

- Ensure good IEQ through properly ventilating all spaces
- Provide good humidity control
- Simplify ventilation design (ASHRAE 62.1 compliance) and control

Psychrometrics Review

Design Considerations DEDICATED OUTDOOR AIR SYSTEMS

Code Requirements

- 90.1 impacts to DOAS design are
 - Minimum equipment efficiencies
 - Fan power limitations
 - Economizer
 - Exhaust air energy recovery
 - Limitation on simultaneous heating & cooling
 - Do not reheat above 60F

Minimum Equipment Efficiencies

- AHRI 340/360 is referenced by 90.1 but is for packaged rooftop units with 30% outdoor air (not DOAS)
- AHRI 920 is still in progress and has introduced MRE & ISMRE instead of EER/IEER for DOAS unit ratings

2015 Standard for Performance Rating of DX-Dedicated Outdoor Air System Units

Fan Power Limitations

- Typically 1.5 HP per 1k CFM when using variable flow
- Not a challenge with reasonable ESPs

Simultaneous Heating & Cooling

Allowed when using waste heat like a hot gas reheat coil

Economizer & Energy Recovery

- Both required in most zones
- Note of caution on effectiveness (ASHRAE and AHRI have different formulas)

The exchanger heat transfer effectiveness e is defined as the amount of energy recovered, e.g. sensible or latent, divided by the maximum amount of energy that could theoratically be recovered.

The supply air volume heat transfer effectiveness es is defined as

$$e_{\rm S} = \frac{V_{\rm S} (X_1 - X_2)}{V_{\rm min} (X_1 - X_3)}$$

DOAS System Types DEDICATED OUTDOOR AIR SYSTEMS

SPLIT DOAS

SPLIT TYPE SWEGON ERV with LG AHU Kit

AHU KIT

LG AHU kit allows Outdoor (condensing) unit to be piped as far as 656 feet away from AHU

• Elevation difference up to 360 feet

PACKAGED DOAS

- 5 to 70 tons
- Inverter compressor option

OAU with VRF

18 ton ODU

- 400 to 1200 CFM
- Minimum 23F entering air temp
- Reheat with standard indoor units

Air to air heat exchanger

- 400 1200 CFM
- Minimum entering air 14F

Energy Studies DEDICATED OUTDOOR AIR SYSTEMS

Energy Studies

Energy Modelling has shown up to 28% savings using Packaged DOAS with ERV over mixed OA system

Figure 3: LG Dedicated Outdoor Air Systems (DOAS).

(a) Split Type : VRF Condensing Unit with Split-Type DOAS Indoor Unit.

(b) Packaged Type.

Baseline and proposed HVAC systems were as follows:

Table 5: Air-Handling Mechanical System Characteristics.

	HVAC System		Baseline – No OA system	Proposed - LG Multi V + Split Type DOAS	Proposed - LG Multi V + Packaged DOAS	Proposed - LG Multi V + Packaged DOAS+ ERV		
6	Cooling	VRF (DX- Cooling)	150-200 Tons 15 EER	150-200 Tons 15 EER	150-200 Tons 15 EER	150-200 Tons 15 EER		
F	leating	VRF (Heat Pump)	4.5 COP	4.5 COP	4.5 COP	4.5 COP		
	Air Systems		Ducted Type VRF Indoor units	Ducted Type VRF Indoor units	Ducted Type VRF Indoor units	Ducted Type VRF Indoor units		
	OA Processing		15-20 Tons Direct inlet and mixed with RA	LG DOAS* Cooling:15 EER, 25 IEER Heating: 4.5 COP - Fan power	LG DOAS* Cooling:12.5 EER, 25 IEER Heating: Gas Furnace, ŋ = 80% - Fan power	LG DDAS* Cooling 12.5 EER, 25 IEER Heating: Gas Furnace, n = 80% Wheel Type Energy recovery ventilator Latent Effectiveness: 55% - Sensible Effectiveness: 65% - Fan power (Supply and Return Fans)		

Chicago Results (5A)

Energy consumption by end use for the Chicago location (Climate Zone 5A) was as follows:

Table 15: Chicago Annual Energy Consumption / Outdoor Air Conditioning Energy Cost Comparisons.

(1) Option A: Neutral temperature air.

System	Baseline		Proposed		Proposed			Proposed			
	(IMIXed OA)		<u>(</u>)	Savings		(Раскадео Тур		Savings	Гласка	zea ERV	Savings
	Energy	Cost	Energy	Cost	Over	Energy	Cost	Over	Energy	Cost	Over
					Baseline			Baseline			Baseline
	kBtu	\$	kBtu	\$	%	kBtu	\$	%	kBtu	\$	%
OA	167,207	4,460	119,860	3,197	28%	329,091	4,114	8%	97,045	1,639	63%
Primary	1,371,605	36,581	1,054,004	28,111	23%	1,058,813	28,240	23%	1,049,544	27,991	23%
Total	1,538,812	41,041	1,173,864	31,308	24%	1,387,903	32,354	21%	1,146,589	29,630	28%

(*https://www.ahuidinectory.org/ahuidinectory/pages/vrfhp/defaultSearch.aspx.)

Case Studies DEDICATED OUTDOOR AIR SYSTEMS

1280 Peachtree, Atlanta

40 Story Condo Building

- Replacement of 10,000 CFM DOAS AHU
- 64 tons Multi V IV
- 8 AHU kits
- Equipment could only be brought thru elevators

Quantum on the Bay, Miami

238 Ton DOAS Replacement

• 36% Energy Savings using LG AHU kit with split DOAS units

Baseline system : Rooftop units (AAON)

Proposed system : LG Multi V 5 + LG EEV Kits + AAON AHU

LG Appliance Factory, Clarksville

23 LG RT DOAS Units

- 800 Tons total
- Mix of 100% OA units and partial recirculation units

Best Practices DEDICATED OUTDOOR AIR SYSTEMS

Controls

- Built in Graphics
- Web based controller with IP address
- Easy to use
- Proven control sequences for reliability

Inverter Compressors

- Accurate capacity control
- Reduced energy consumption
- Quieter than digital scroll

Energy Recovery Wheel

- Reduces required cooling tonnage
- Reduces stress on compressors
- Built in rotation sensors with alarm
- Modulating (VFD) control for frost prevention

Condenser Fan

- Whisper quiet condenser fans
 - Low sound fan blades
 - 20 db quieter than standard condensing fans
 - AMCA rated sound data
 - Modulate lead condenser fan for head pressure control

Airflow Monitoring

- Factory installed airflow monitors
 - Fan inlet cone
 - OA damper
 - Airflow rates visible at the controller

Compressors on raised platform

• Lower noise and vibration than mounting on floor

System Controls

Side Discharge Configurable

• Side return/discharge option on LG unit

• Other manufacturers require tall plenum curbs

End of Line Tested

- Units are run tested at factory for minimum 60 min
- Tests reports available upon request

Mistakes to avoid **DEDICATED OUTDOOR AIR SYSTEMS**

Do Not use ERV as primary DOAS

Virginia School called complaining of high humidity levels

- ERV discharge was ducted into the building at 85.5F DB/72.5F WB without cooling the air to remove humidity
- System had to be retrofitted to add cooling coil and condenser

Avoid LAT below 50F

Packaged DX works well down to 50F LAT in dehumidification

- Sub 50F LAT may require chillers or custom equipment, adding costs
- Minimize energy efficiency by not oversizing compressor

Do Not Modify Packaged Controls

Packaged DOAS Controls cannot be modified to communicate to VAV boxes

• BMS system was VE'd out of the project

Local LG Support DEDICATED OUTDOOR AIR SYSTEMS

Wadsworth Solutions

Bart Barry – Vice President Ph. 216/391-7263 M. 216/645-1658 E: bbarry@wadsworthsolutions.com Nestor Antonio Espana Ph. 216/391-7263 M. 216/906-6876 E: nespana@wadsworthsolutions.com

- Founded in 1944
- \$65,000,000 in annual sales
- 145 employees
- · Family owned and second generation
- Tremendous relationships with Engineers and MCs
- Toledo, Cleveland, Youngstovm, and Detroit

Wadsworth Solutions

Wadsworth Solutions

"Providing Solutions for Secure, Energy Efficient Environments"

•Diverse company that provides many in-building solution

- •Holistic approach to identifying and solving client's need.
- •Technology based organization with highly skilled and trained staff members

•Strength continues to be the dedication and integrity of our personnel

Building Automation

Wadsworth Solutions

