Cleveland Chapter Meeting Nov. 17th, 2022

Low Cost/No Cost Your Way to Success!

John Puskar

Who is John Puskar, P.E.?

- Licensed Professional Engineer
- Practicing over 40 years
- Founder CEC Combustion Services
- BSME, Mechanical Engineering,
- Youngstown State Univ., 1981
- MBA, Weatherhead School of Mgt.
 Case Western Reserve Univ., 1985
- Member of <u>NFPA 54, 56, 59A, 85, 820, ASME CSD-1, API 54, former NFPA 86</u>
- Author and presenter of more than 100 papers, more than 100 conferences and workshops, trained thousands worldwide.

AEE - CIEP & CEM

CEC Combustion Safety becomes a part of Eclipse.

ombustion Safety will continue their mission to ensure ork environment while m mizing your fuel systems and

of over 300 industrial plants

and combustion safety markets" says Lach Perks, President of Eclipse. "With the acquisition of CEC, safety solutions and services for thermal processors

Left to Right. Doug Perks, Chairman and CEO of Eclipse, John Puskar, General Manager of CEC, Lach Perks, President of Eclipse.

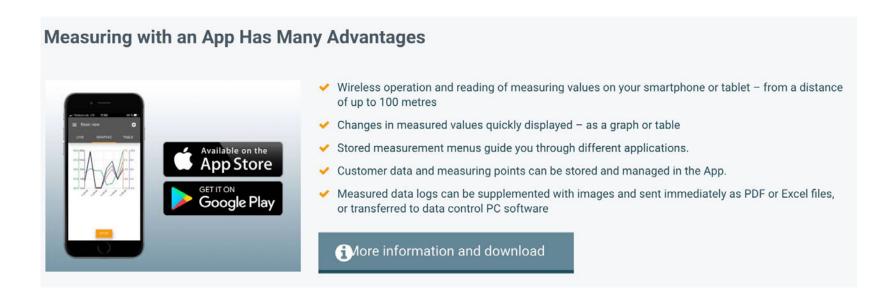
90% of my work, Industrial implementing projects, contractor experience

I'm a hands-on tool guy

I am trying to focus on unusual innovative things, not all the usual!

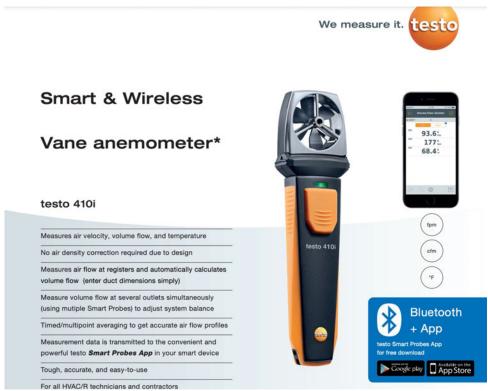
Low-cost/No-cost energy tools!

My favorite 10 Low Cost/No Cost tools!


- 1. Testo Smart Probes
- 2. Flir Ipad/phone Imagers
- 3. Micro data loggers
- 4. Smokeys
- 5. Combustion Analyzers
- 6. Ultrasonic flow meters
- 7. IAuditor software platform
- 8. TLV site, energy calculations
- 9. DOE Steam Modeler site
- 10. BD Modeler measurement

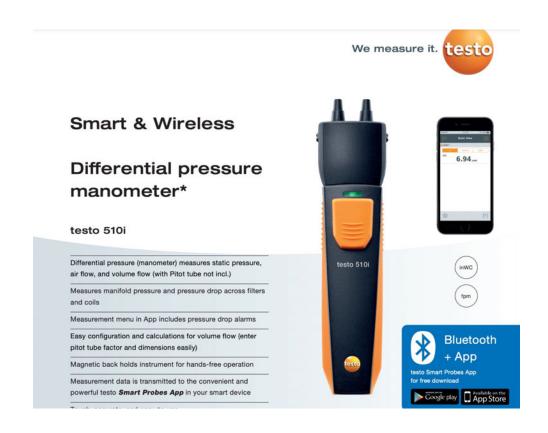
The world of Smart Instruments!

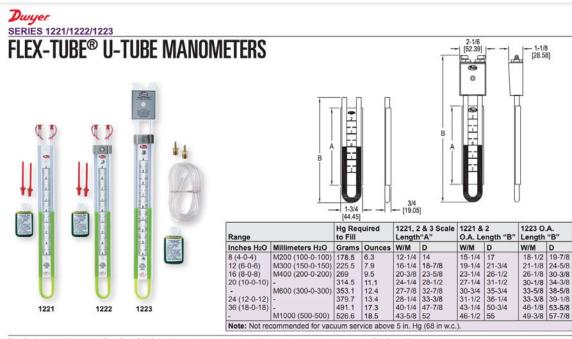
Lots of data collection, .



Yes, there's an app for that

1. Testo Smart Probes, measure air flow and small pressures.





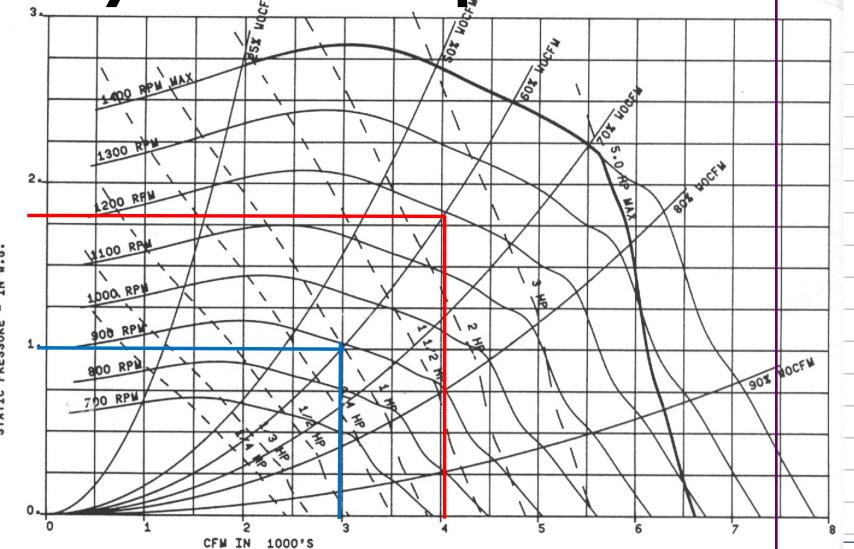
Air Flow, Anemometers - Hot Wire or Vane

But How Do I? - Measure Small Pressures

The Series 1221/1222/1223 Flex-Tube* U-Tube Manometers combine the inherent accuracy of the "U" Tube with the durability of tough, long-lasting plastic construction. The columns are made of 0.375" O.D. flexible and shatterproof clear butyrate tubing and are backed by a white scale channel to provide maximum color contrast. These manometers are ideal wherever a portable, direct reading manometer is needed.

FEATURES/BENEFITS

Series 1221 Flex-Tube® U-Tube Manometer


Our simplest, lowest cost basic U-gage. A dependable U-tube manometer that withstands hard use and provides accurate, high visibility readings. For use with water, mercury or red gage fluid. For mercury filled manometers, a scale clamp bar, Dwyer® Part No. A-363 (available as an extra for Series 1221 — and standard on Series 1222) is recommended. One pair of carrying plugs and a pair of non-kink vinyl tube connectors are included with each manometer.

Manometers - Digital or U-Tube

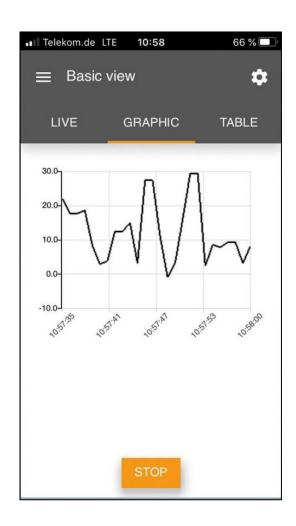
#1

No one ever measures where they are on the perf. Curve!

Fan Curves & Conditions watch it and document it on the app.

Things you will find:

VFD opportunities


VFD's not set right

Motors oversized

Airflow way too high for the ventilation system needs

Air velocity required for ventilation system capture velocity not adequate


And more.....

#2

Cheap Thermal Imaging!

\$400 from FLIR, be using it in 10 minutes

- Building envelope issues
- Electrical contact resistance
- Overloaded circuits
- Wet Roof Insulation
- Uninsulated piping and valves
- Failing bearings and couplings
- Leaking valves
- Leaking steam traps

Flir One Thermal Imager for iOS and Android

Uninsulated piping with temperatures

Review furnace fireboxes, ducts, for air leaks, (infiltration), refractory issues.

Duct leakage

Looking into the kitchen

#3

Micro Data Loggers to the Rescue

Wireless to your phone!

MEMORY LOGGING

Channel 1: CW in Temp

Channel 2: CW out Temp

Channel 3: Air into coil Temp

Channel 4: Air out of coil Temp

Gateway available to send info

To Cloud

Data Logger

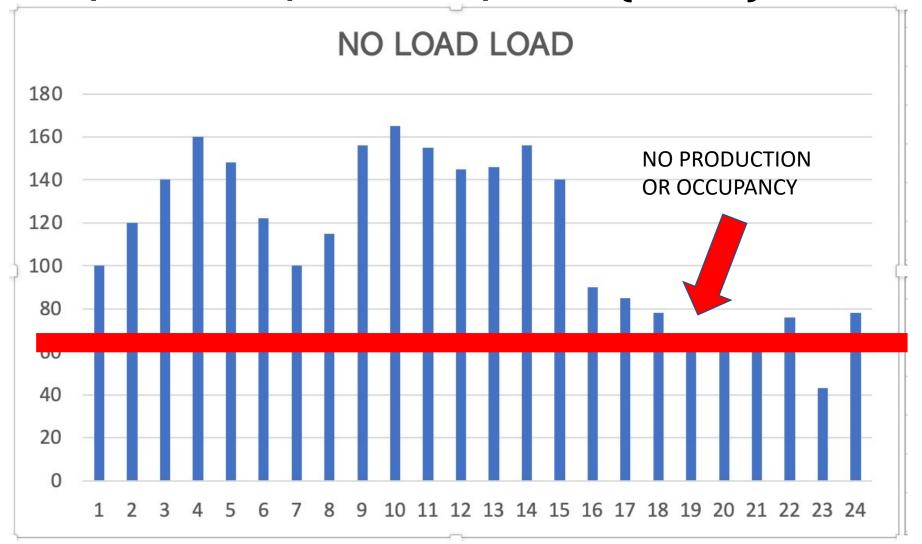
Bluetooth-enabled logger

\$199 USD

Build a Kit

requirements can be found at the bottom of the HOBOconnect software page.

Oversized Equipment, short cycling



Boiler plant master control, (multiple boilers) lead/lag-75% load, 3 minutes, 5 min. minimum

No Load - Load, leaks - comp. air, steam, water, etc. (CT's)

#4

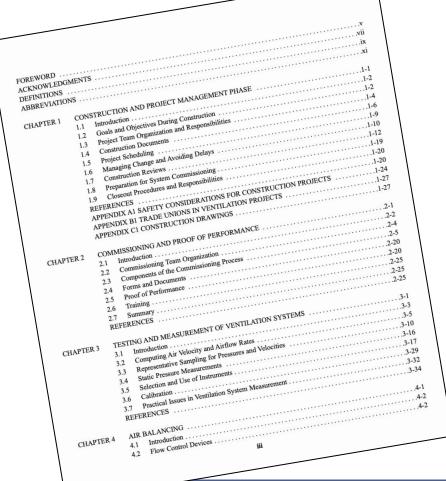
SEEING IS BELIEVING - Smokeys

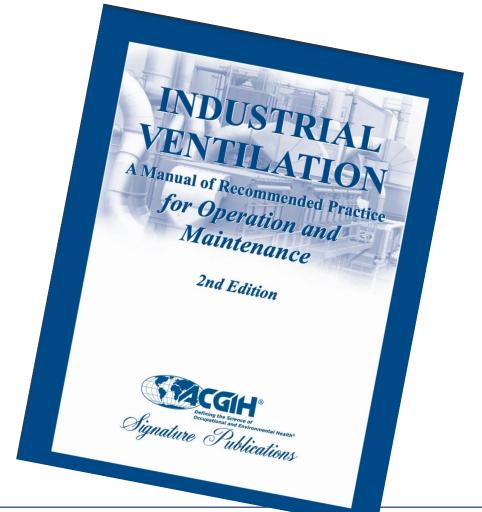
Smokeys 75 Second Smoke Emitter, Pack of 10

DIVERSITECH

Model #: 14175 Item #: DVT14175

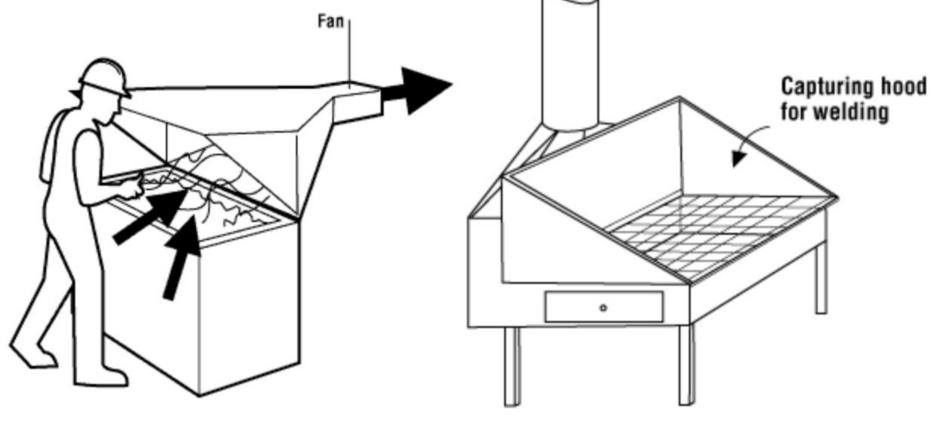
Features:


- Smoke bomb
- 75-second running time
- 600 cubic feet
- · Non-toxic, oil-free smoke


https://youtu.be/C-MZaHxQxAw

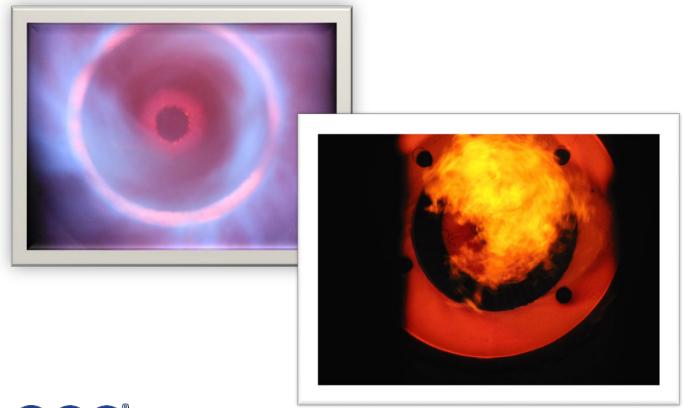
5:00

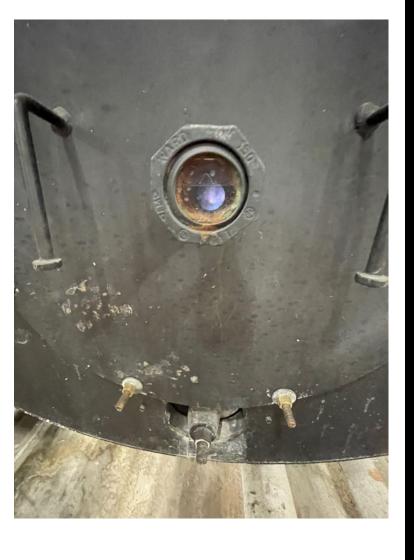
Best Industrial Ventilation I have ever found in over 40 years of practice! www.acgih.org

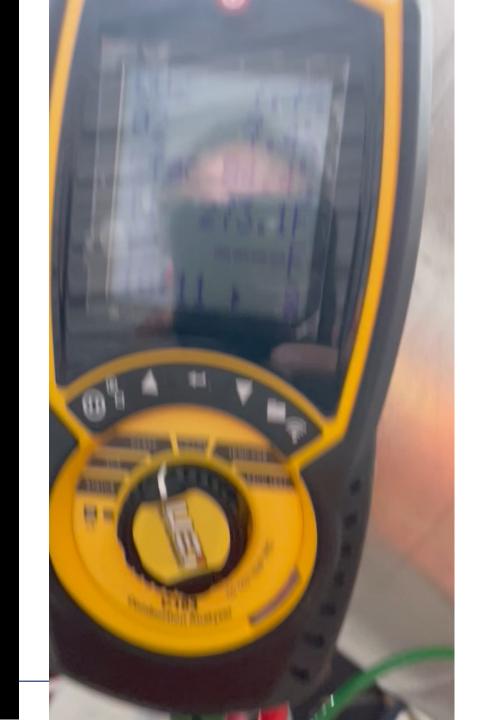


Practical use: capture velocities on hoods, duct leakage, air flow in ducts.

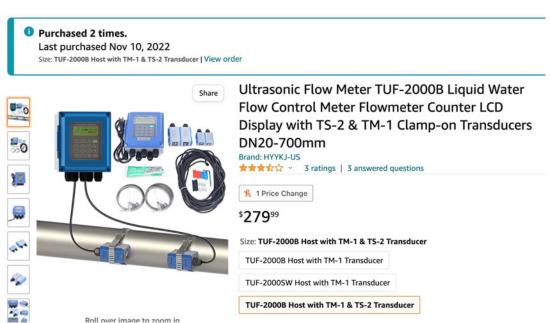
What's the flame telling you? Flue Gas Analyzers are now CHEAP!

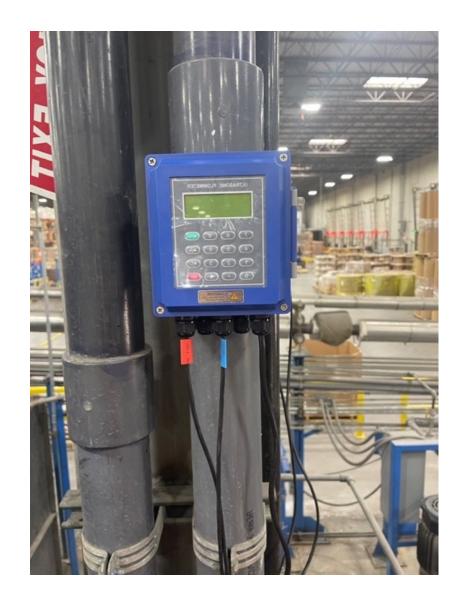




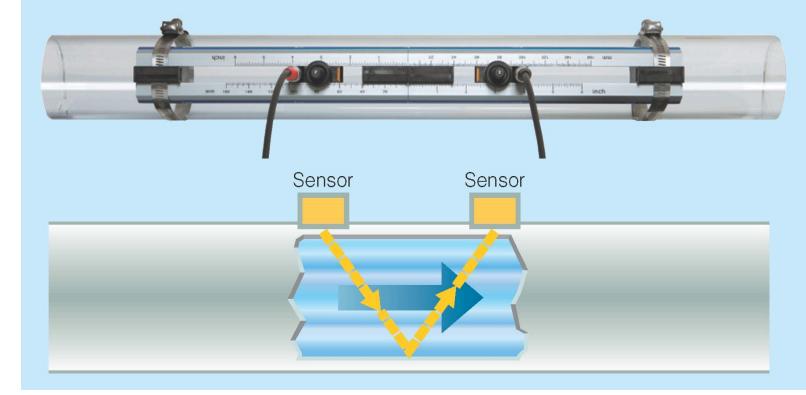

Energy Conservation Measure: Tune burners – Optimize air/fuel ratios

Don't Try and Adjust, but you can diagnose And estimate savings easily!


Having an analyzer now makes it practical and easy to quantify your conditions and take action!

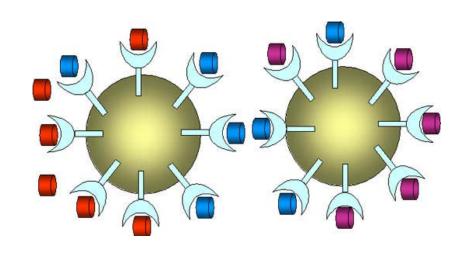


Saving water, got to measure it to manage it.



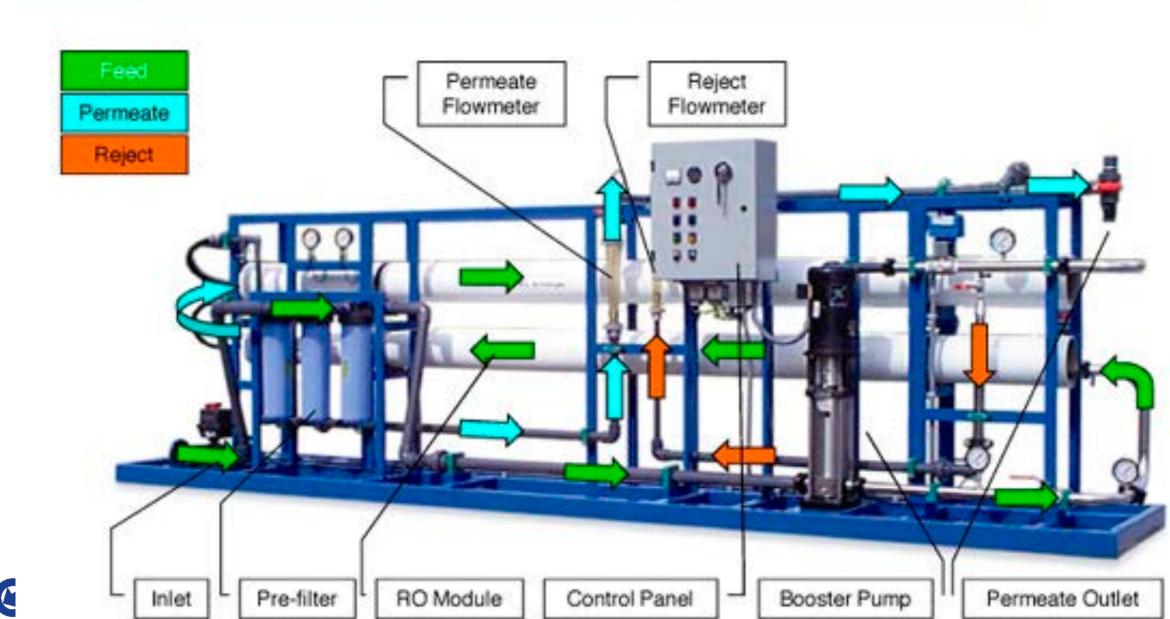
With ultrasonic pulses propagated diagonally between the upstream and downstream sensors mounted on the exterior of the pipe, the flow rate is measured by detecting the time difference caused by the flow.

At a cooling tower overflow drain in Singapore, Pharma Plant - 2" pipe



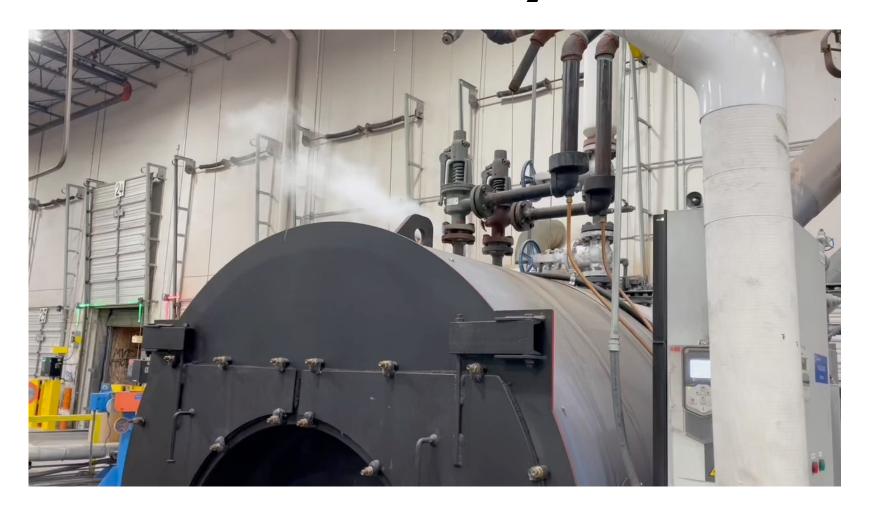
Now you can afford to have meters all over and avoid this!

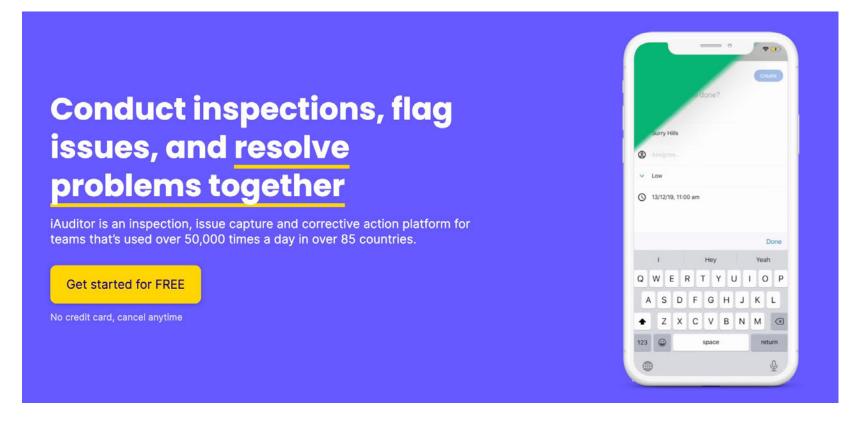
You can validate softener parameters


Different beads,
Cationic (- Negative charge)
Anionic (+ positive charge)
Have different affinities
& adsorb/elute cycles,
but all of this works
the same way

Vessels filled with different resin beads one regenerating, one in service, one in standby

And RO parameters




#7

Daily rounds for obvious things with accountability

lAuditor, digitize any audit, capture reporting, analyze the results.

www.safetyculture.com

Automation of checklists, procedures, energy audits for multiple locations! — FIXING PEOPLE!

Imagine you run a school system, a university, a group of hotels or fast-food restaurants, or similar plant sites – here ya go!.

I am developing automated boiler logs with Algo's

No capital dollars - \$20 a month

Great possibilities!

Steam System Weekly Review Checklist

Review conditions of Boiler Support Systems

✓ Title Page

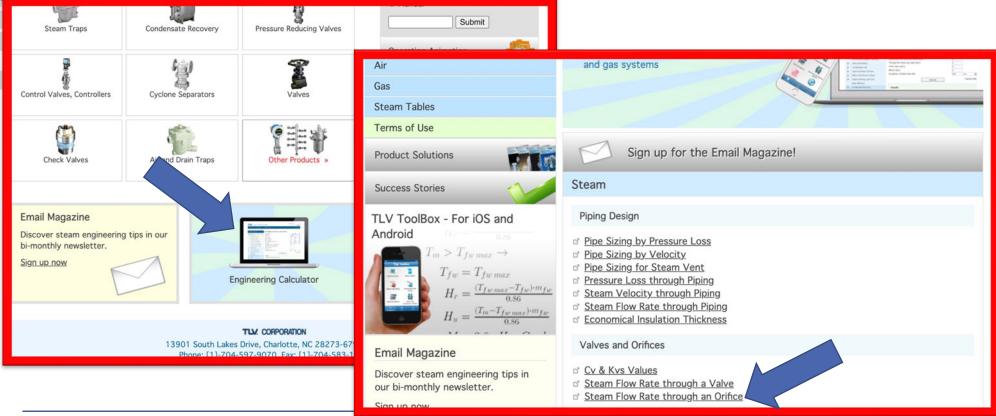
The Title Page is the first page of your inspection report. You can customize the Title Page below.

Question
* Texas Plant
Conducted on11/16/22
Prepared by John Puskar
Location main plant boiler room

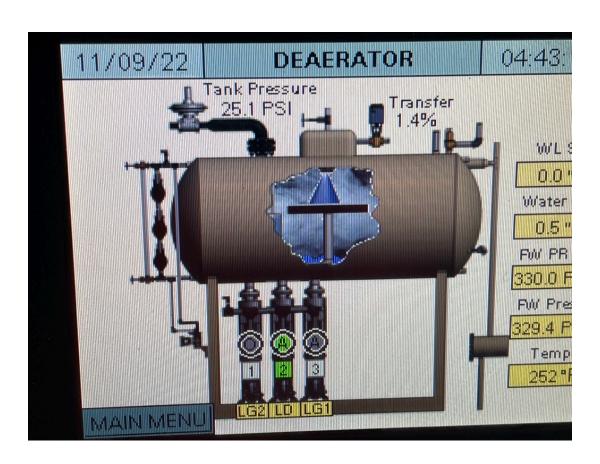
Review of CV Station Pressure Control Equipment This is where you add your inspection questions and how you want them answered. E.g. "Is the floor clean?" Question Type of response Review relief valve discharge lines at CV1, is there an active discharge or leak? No N/A Yes Are there any steam leaks at CV1? No N/A V Yes If answer <u>is</u> (Yes) then ♠ Notify × + trigger No file chosen Are steam traps failed at CV1 pressure control station? No N/A Yes V Review relief valve discharge lines at CV2, is there an active discharge or leak? No N/A V Yes Are there any steam leaks at CV2? No N/A Yes

✓ Page 2 of 3 Score Review of CV Station Pressure Control Equipment 0/9(0%) Review relief valve discharge lines at CV1, is there an active discharge or leak? Yes No N/A I Add note...

 □ Attach media Create action Are there any steam leaks at CV1? Yes No N/A I Add note... 場 Attach media □ Create action Are steam traps failed at CV1 pressure control station? Yes No N/A Create action



#8


A Steam Specialist Company Select your language North America English (N.America Latin America Español (americano) Português (Brasil) Europe Deutsch English (Europe) English (UK) Español (España)

TLV, website, more than 50 calculations, steam tables, easy

Deaerator operating conditions are horrible! Should be 6 to 8 psig

Supposed to be 18-24" vent, kind of lazy

Secondary Pressure

Diameter of Orifice

Steam Flow Rate through a Valve

Services Training & Resources Company Contact Us

Home > Engineering Calculator > Calculator: Steam Flow Rate through an Orifice Calculator: Steam Flow Rate through an Orifice **Engineering Calculator** Steam TLV ToolBox - For iOS and Android Piping Design Valves and Orifices **Input Data** Units Imperial > Cv & Kvs Values Primary Pressure 25.2 psig

Show Advanced Options

psig

psig

Search

Improved Steam Dryness

Condensate Load

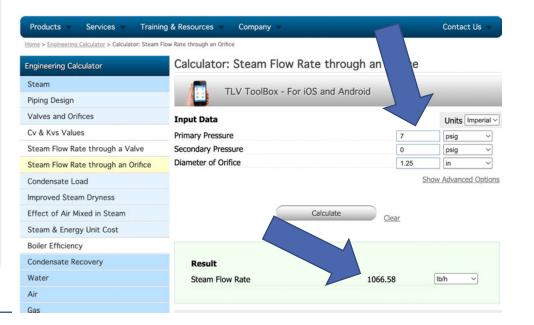
Effect of Air Mixed in Steam

Steam Flow Rate through a Valve

Steam Flow Rate through an Orifice

Steam & Energy Unit Cost

Steam Flow Rate through an Orifice	Diameter of Orifice	1.25	ir	ı
Condensate Load			Show Ad	Ivanced Options
mproved Steam Dryness				
Effect of Air Mixed in Steam	Calculate	Clear		
Steam & Energy Unit Cost				
Boiler Efficiency				
Condensate Recovery	Result			
Water	Steam Flow Rate	2223.22	lb/h	~
Air				
Gas				
Steam Tables	Equation(s)			
Terms of Use		p1 : Primary Pres	ssure (psia)
Product Solutions	$\begin{array}{c} \frac{(p_1 - p_2)}{p_1} < F_{\gamma} \cdot x_T \to \\ m_s = 63.3C \cdot \left(\frac{d_p}{0.183}\right)^2 \cdot \left(1 - \frac{\frac{p_1 - p_2}{p_1}}{(3F_{\gamma} \cdot x_T)}\right) \end{array}$	p2 : Secondary F do : Diameter of C : Discharge C	Pressure (p Orifice (in	sia)
Success Stories	$\cdot \sqrt{(p_1-p_2)\cdot ho}$	ms: Steam Flow	Rate (lb/h	
teamAqua Offers	$\frac{(p_1-p_2)}{p_1} \ge F_{\gamma} \cdot x_T \to$	Fγ : Specific hea (=Specific he	t ratio fact	or
nstantaneous Hot Water via ndirect Heating with Steam	$m_s = 0.66 \cdot 63.3C \cdot \left(\frac{d_o}{0.183}\right)^2 \cdot \sqrt{F_\gamma \cdot x_T \cdot p_1 \cdot \rho}$	xT : Pressure diff (=0.72)		


0

Primary Pressure

Secondary Pressure

1.25

Savings Calculations

2223 – 1066 = 1,157lbs/hour or about 1,157,000 BTU's/hour

1.157/.825 combustion eff. = 1.4MMBTU/hr. Nat. gas input

1.4MMBTU/hr. X \$8/MMBTU X 8,500 hours = \$95,200, or \$100k with water/chemicals

What could this be worth?

Evaluating turbine and boiler operations and best practices.

Steam System Modeler Tool (SSMT)

Questions? AMOeCenterHelpDesk@ppc.com

EERE » Advanced Manufacturing Office » Steam Calculators » Steam System Modeler

Printable Version

Main

About

Preferences

Glossary

Resources

Tutorials

Properties Calculators:

Saturated Properties

Steam Properties

Equipment Calculators:

Boiler

Heat Loss

Flash Tank

PRV w/ Desuperheating

Header

Deaerator

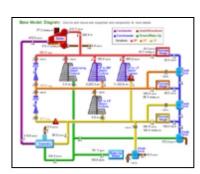
Steam Modeler

Using the Steam System Modeler watch tutorial view guide

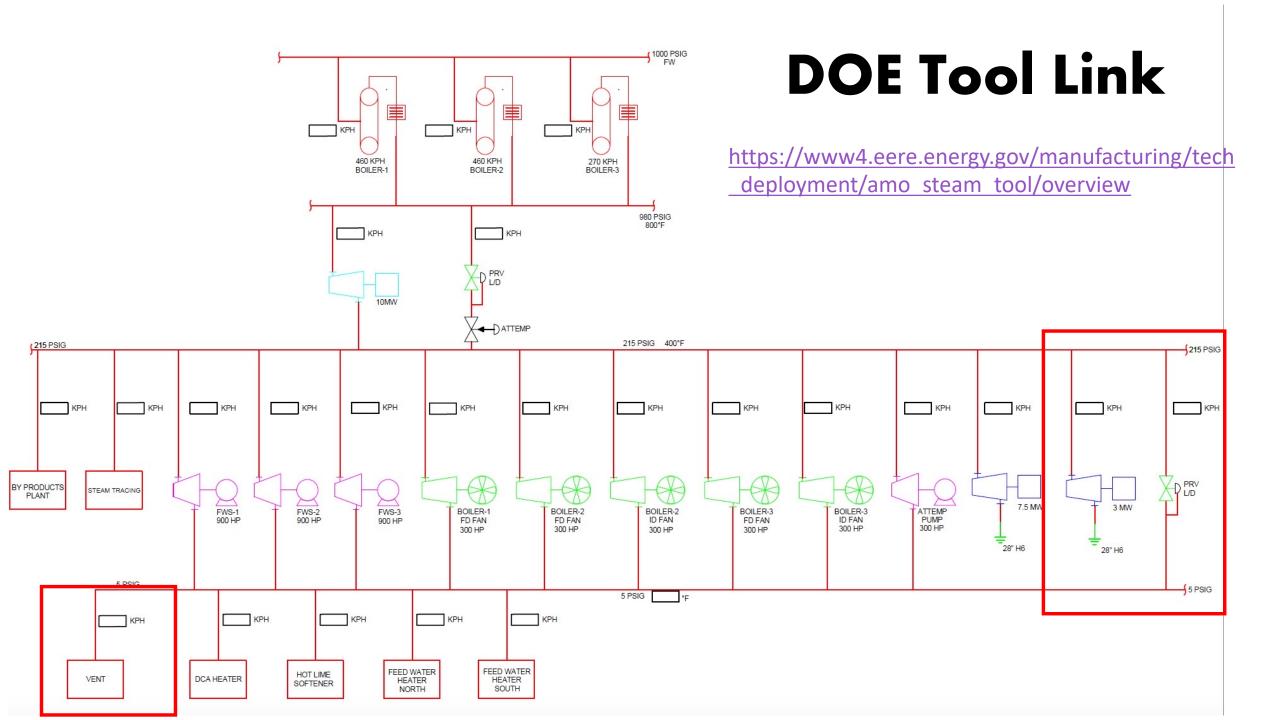
Step 1: Generate a Base Model

There are 3 ways to generate a Base Model:

- Manually enter specific steam system details [link]
- Load an example [below]
- Reload a previously downloaded model [link]


Step 2: Generate an Adjusted Model

A series of projects and system adjustments may be selected and combined with the Base Model to generate an Adjusted Model.


Step 3: Compare Base Model to Adjusted Model

A summary of Base Model vs Adjusted Model metrics will be generated once both a Base Model and Adjusted Model have been created.

A generated model may also be downloaded as an excel file and re-uploaded later.

Great stuff here!

EERE » Advanced Manufacturing Office » Steam Calculators » Steam System Modeler

Printable Version

Main About Preferences Glossary Resources **Tutorials Properties Calculators:** Saturated Properties Steam Properties **Equipment Calculators:** Boiler Heat Loss Flash Tank PRV w/ Desuperheating Header Deaerator Steam Turbine

Steam System Modeler

Steam Modeler

view guide

Using the Steam System Modeler watch tutorial

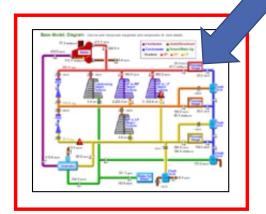
Step 1: Generate a Base Model

There are 3 ways to generate a Base Model:

- Manually enter specific steam system details [link]
- Load an example [below]
- Reload a previously downloaded model [link]

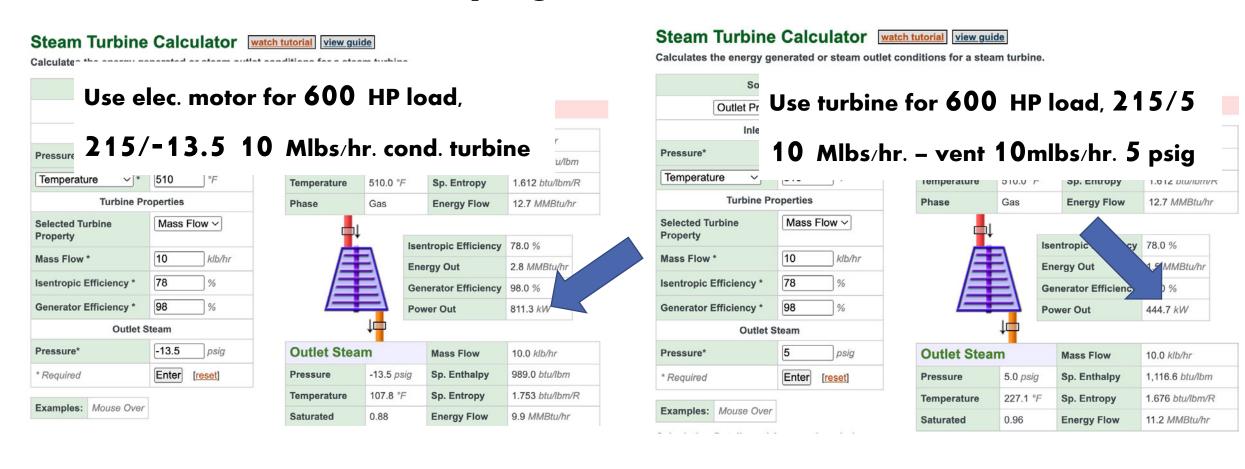
Step 2: Generate an Adjusted Model

A series of projects and system adjustments may be selected and combined with the Base Model to generate an Adjusted Model.


Step 3: Compare Base Model to Adjusted Model

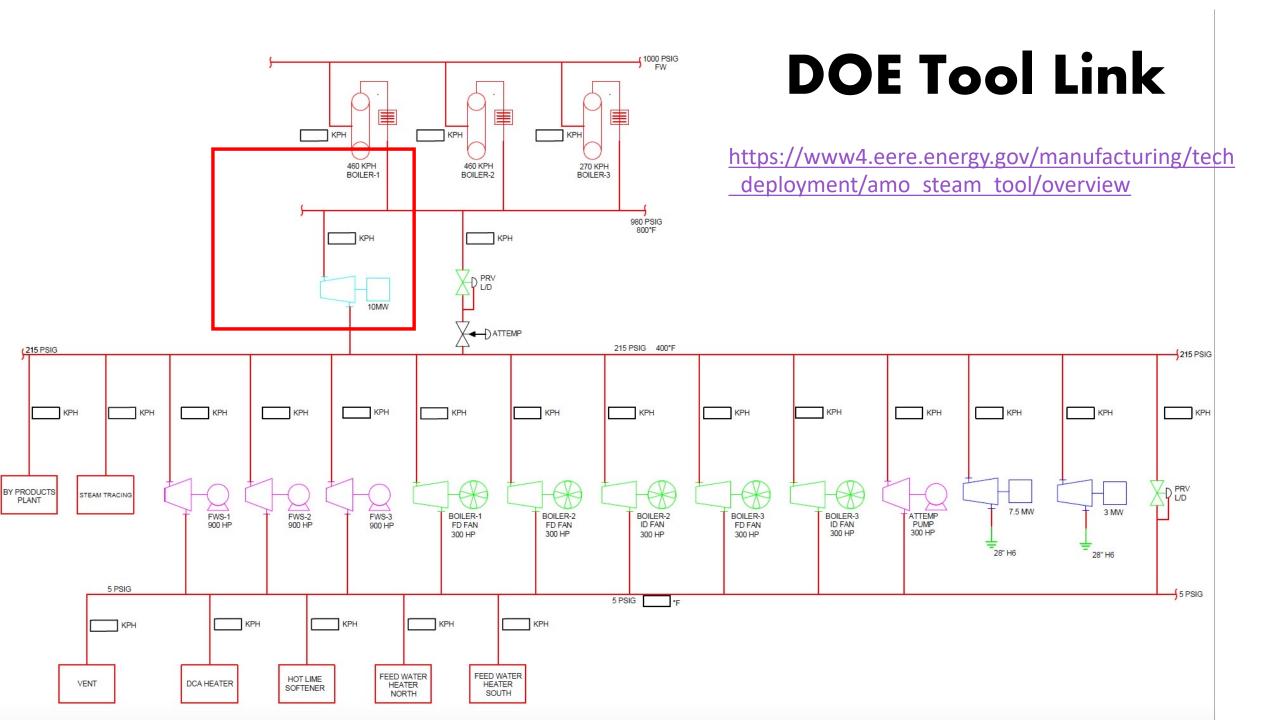
A summary of Base Model vs Adjusted Model metrics will be generated once both a Base Model and Adjusted Model have been created.

A generated model may also be downloaded as an excel file and re-uploaded later.


Steam Modeler Examples

Click on any of the links below to load the example into the steam modeler:

Comparing electric motor on and 3MW CT, or 215/5 turbine and vent 5 psig steam



Change the operating philosophy for \$3-400k/yr

Ge	n Eff = 95%	Isentropi	c Eff = 70%			
	Steam Bleed	Excess Steam	Avg. Daily Pot.	Pot. MW	Pot. Revenue	
	(lbs/hr)	Vented (per hr)	Power (KW/hr)	lost	(@ \$75/MW)	
Jan	7,453	2,250	160.8	119.64	\$ 8,972.64	
Feb	5,203	0	0	0.00	\$ -	Best Practice
Mar	9,375	4,172	298.2	221.86	\$ 16,639.56	
Apr	16,889	11,686	835.4	601.49	\$ 45,111.60	
May	22,488	17,285	1235.7	919.36	\$ 68,952.06	
Jun	19,225	14,022	1002.4	721.73	\$ 54,129.60	
Jul	13,594	8,391	599.9	446.33	\$ 33,474.42	
Aug	14,781	9,578	684.7	509.42	\$ 38,206.26	
Sep	14,161	8,958	640.4	461.09	\$ 34,581.60	
Oct						
Nov						
Dec						
Total	123,169	76,342	5,458	4,001	\$ 300,067.74	

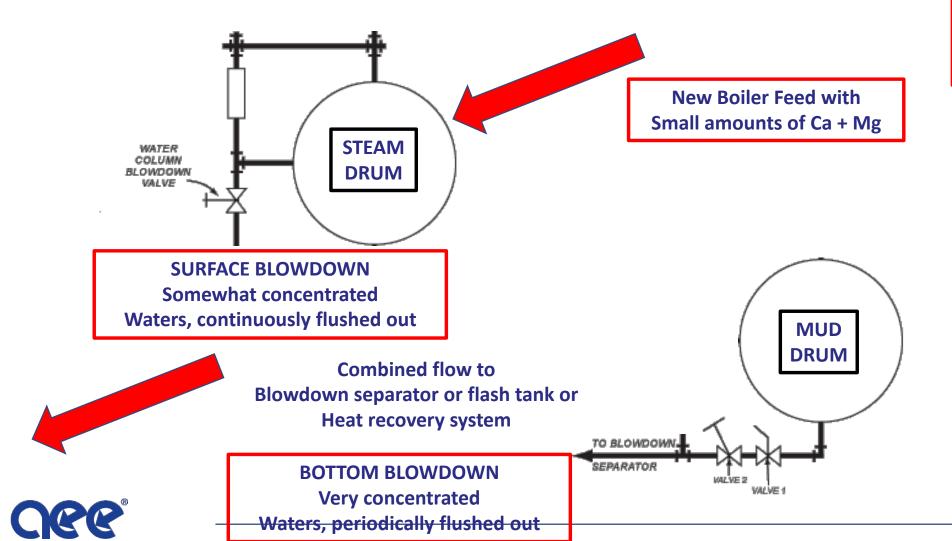
How come the heat rate changes so much?

In c	omparison to Fe	eb 2022										
CALENDAR YEAR OF 2021							Money Potential (per					
	Steam Genera		rated (M lbs / hr)		rated (M lbs / hr) MW from 10 M lbs of Steam to		Doi	. MW	month) (@			
	Boiler #1	Boiler #2	Boiler #3	Total Generated	Meg Gen	make 1 MW	n make 1 MW	make 1 MW	make 1 MW	10	. IVI VV	\$75.00/MW)
Jan	106,260.75	101,379.03	2,481.18	210,120.97	6.2957	33,375.32	0.	1940	\$ 10,824.11			
Feb	33,148.81	66,736.61	146,595.24	246,480.65	7.8006	31,597.67	0.	L304	\$ 6,571.47			
Mar	616.94	829.30	200,550.00	201,996.24	6.7755	29,812.58	0.	0665	\$ 3,712.13			
Apr	13,730.56	295.83	189,381.94	203,408.33	6.3125	32,223.10	0.	L528	\$ 8,249.07			
May	59,279.57	1,301.08	130,489.25	191,069.89	6.0659	31,499.22	0.	1269	\$ 7,079.03			
Jun	17,034.72	2,497.22	170,236.11	189,768.06	6.1035	31,091.52	0.	1123	\$ 6,063.07			
Jul	166,907.26	27,745.97	4,407.26	199,060.48	5.9341	33,544.96	0.	2000	\$ 11,162.75			
Aug	6,854.84	3,825.27	194,977.15	205,657.26	6.7325	30,546.82	0.	928	\$ 5,177.82			
Sep	-	-	195,244.44	195,244.44	6.4986	30,044.03	0.)748	\$ 4,039.50			
Oct	-	-	192,055.00	192,055.00	6.3642	30,177.17	0.	796	\$ 4,439.94			
Nov	429.17	-	204,579.17	205,008.33	7.2611	28,233.74	0.	0100	\$ 542.37			
Dec	247.31	135.75	205,461.02	205,844.09	7.0551	29,176.61	0.	0438	\$ 2,442.60			
Total									\$ 70,303.87			

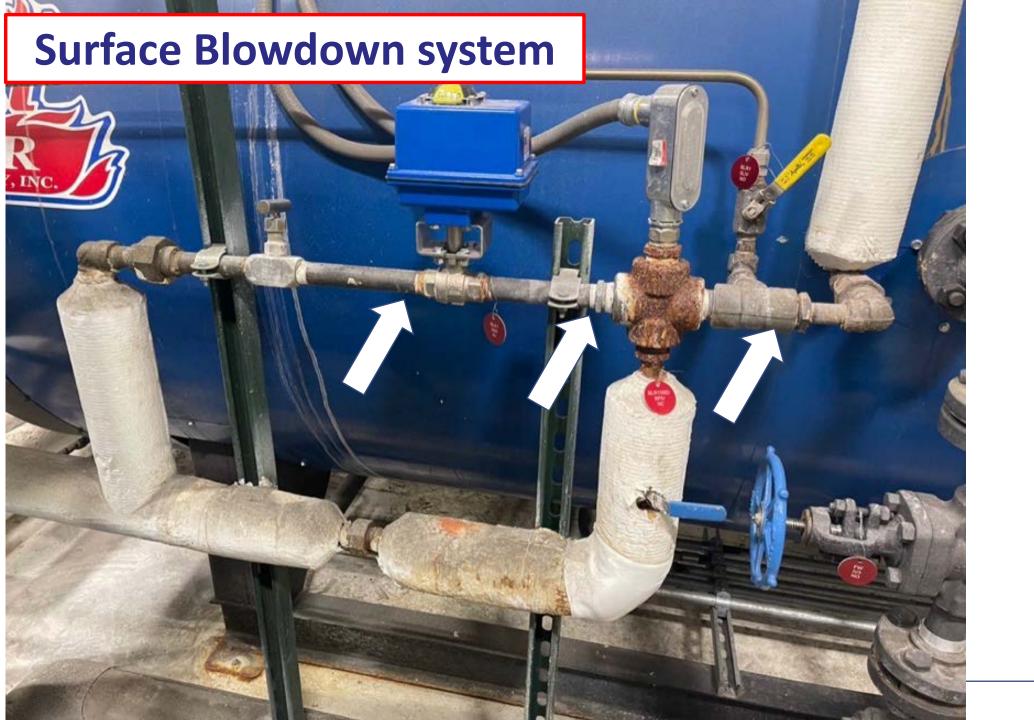
Turbine seals, attemperator, letdown station

#10

Managing boiler water chemistry Emerson BD software

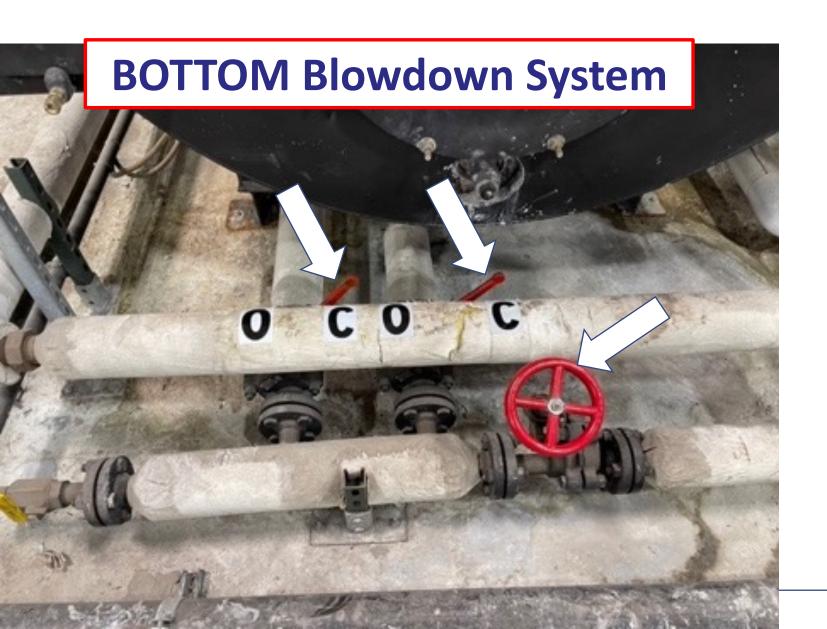

Utilities Plant - Steam Boilers

Test	Hurst Boiler 1	Hurst Boiler 2	DA	Softener
Controller Conductivity (Micromhos)	168 2000 max	1997 2000 max		
(Miloroninioo)	2000 max	2000 max		


Test	Aquafeed 1410	КОН	K-BAC 1020	RO	RO - 1st Array	RO - 2nd Array	RO - 3rd Array
Conductivity (Micromhos)				23.1 200 max	19.8 200 max	6.5 200 max	16 200 max

How TDS, total dissolved solids get controlled BLOWDOWN, surface and bottom

Blowdowns are hot saturated water



Conductivity Probes

Doing the BEFORE & AFTER Scenario's

Contact Name

Emerson Process Experts

Analysis Date: November 16, 2022

Company Name Address City, State Zip Emerson Process Management Process Systems & Solutions 12301 Research Blvd, Bldg III

Austin, TX 78758 Chris Forland

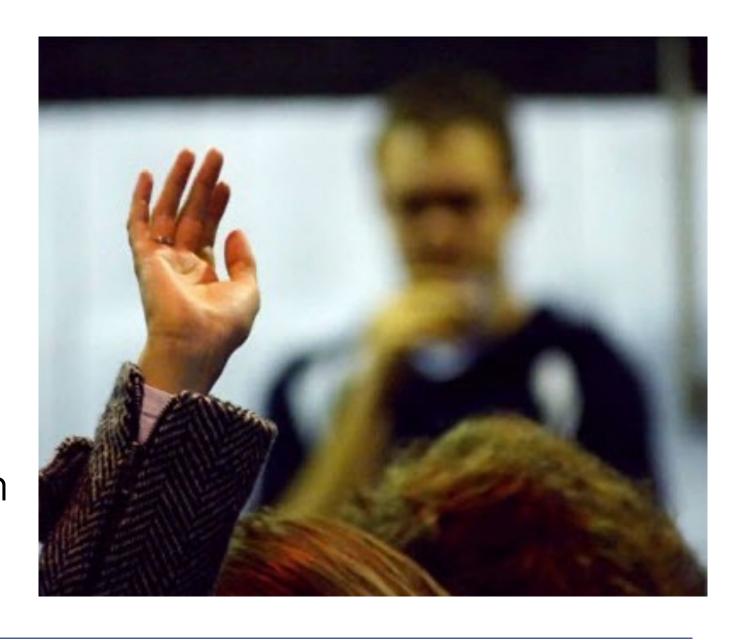
Operations Consultant

Boiler Data	1	
oiler Steam Pressure	300	
verage Boiler Steam Flowrate	3,000	lb/hr
lours of Operation	8760	hrs / yr
oiler Efficiency	80	%
Feedwater / Boiler Water / M	lakeup Water D	ata
lake-Up TDS	20	ppm
ondensate TDS (use 10 ppm if not known)	10	ppm
ondensate Return	5	%
lowdown Temp Enter P or T >>	1200000	°F.
lowdown Press (sat) not both >>	300	psig
lake-Up Temp	55	°F
Blowdown Da		
resent Blowdown TDS (average)	168	ppm
merson Blowdown TDS (controlled)		
Fuel / Water / Chemical /		
uel Cost	\$8.00	
Vater Cost	\$10.00	7 / 3
hemical Cost	\$0.25	\$ / 1000-gal
otal Blowdon Control System Cost	\$15,000	
Calculated Da		
	20	ppm
lowdown Enthalpy resent Feedwater Flowrate	398.9	
resent Feedwater Flowrate resent Blowdown Rate	3,348	
Count Diomagnin Marc	348	lb/hr
resent Blowdown Rate merson Process Feedwater Flowrate	11.6%	"L /L"
	3,029	lb/hr
merson Process Blowdown Rate	29	lb/hr
merson Process Blowdown Rate	1.0%	
ifference (Savings)	319	lb/hr
ofference (Savings)	10.63%	15 the 1
otal Blowdown Saved	2794	, ,
verage Blowdown Saved	319	
eat Saved	1313	M-Btu
000's Gallons Saved	335	K-gal / yr
uel Cost Saved	\$10,502	
Vater Cost Saved	\$3,351	
hemical Cost Saved	\$84	4
OTAL SAVINGS	\$13,937]
ауваск Г	202	7
	393	davs

Manufacturers Association (ABMA) is listed in the table below.

ABMA Recommended Feedwater Chemistry Limits

Boiler Operating Pressure (psig)	Total Dissolved Solids (ppm)	Total Alkalinity (ppm)	Total Suspended Solids (ppm)
0 - 50	2,500	500	
51 - 300	3,500	700	15
301 - 450	3,000	600	10
451 - 600	2,500	500	8
601 - 750	1,000	200	3
751 - 900	750	150	2
901 - 1,000	625	125	1
7,000			


The American Society of Mechanical Engineers (ASME) has developed a best operating practices manual for boiler blowdown. The recommended practices are described in Sections VI and VII of the ASME Boiler and Pressure Vessel Code. You can identify energy-saving opportunities by comparing your blowdown and makeup water treatment practices with the ASME practices. The ASME Boiler and Pressure

Questions?

give me a call 216-213-6201

email me:

JPuskar@PrescientTS.com

