Fundamentals of Power Quality

Power Quality Through Better Wiring and Grounding Practice

David Brender, P.E., CPQ National Program Manager Copper Development Association Inc.

Overview of This Presentation

Elements of building infrastructure that can alleviate or cure power quality problems before they affect operations

For Today:

- A bit of theory
- Case studies
- Recommended practice

Poor power quality...

is evidenced by characteristics of the incoming power to a device that deviate from the customary "pure" 60 Hz sine wave, and that can affect reliable and safe operation of the sensitive equipment

What the Equipment Wants

What the Equipment Gets

The real cost of poor power quality is in lost productivity (downtime).

- Estimated at \$15-30 billion per year in US
- Exceeds \$1 million/yr. at some buildings

Equipment is usually a secondary consideration

Where Are Sensitive Loads?

Manufacturing Plant

Resort Hotel

Where Are Sensitive Loads?

Sensitivity is Increasing

- Spread of microprocessors to every type of load
- Micro circuits are getting faster (radio frequency range)
- Circuits are getting smaller
- Operating voltages are lower ("1" may be 1-3 volts)

What used to be acceptable service characteristics are no longer sufficient

Surprising Facts

Most power quality problems are related to grounding and neutral size issues

Over 80% are internally caused

source: EPRI

- Harmonics
- Transients
 - Internally caused
 - Externally caused

Harmonics are integer multiples of the fundamental frequency, i.e.: 2nd harmonic = 120 Hz 3rd harmonic = 180 Hz 4th harmonic = 240 Hz

etc...

Fourier Analysis

A wave of any shape and amplitude can be created by some combination of sine waves of various amplitudes and frequencies

An odd-shaped wave contains harmonics of some fundamental

No Longer Sine Waves

Fundamental and third harmonic added

Source: EC&M Practical Guide to Power Dist for IT Equipment

Neutral carries the vector sum of the three phase currents.

Normally, the vector sum of three balanced phase currents 120° out of phase is zero.

In 3-\, 4-W Circuits:

"Triplen" harmonics add in the neutral.

Triplen harmonics are odd multiples of the 3rd harmonic, i.e.. the 3rd, 9th, 15th, etc.

Harmonics Add in Neutral

Adapted from EC&M Guide to Power Dist. For IT Equip.

Harmonics Can Be Trouble

Cause heating

- in the neutral wire
- in motor windings
- In transformer windings

Can cause capacitor failure

Can cause nuisance tripping

Source: IEEE Emerald Book

Common Sources of Harmonics

Anything that draws current in a nonlinear manner

Such As

- Anything Operated by a MICROPROCESSOR
- Switched Mode Power Supplies (computers)
- Variable Speed Drives
- SCR Controlled devices
- UPS Systems

Etc.

- Arc-Operated Devices (welders, lighting)
- Capacitor Switching

Switched Mode Power Supply

SMPS:

Source: EC&M

Potential Cause of PQ Problems

SMPS draws current In pulses

Source: Dranetz Field Handbook

Other Causes of PQ Problems

Power Factor Capacitor Switching:

Other Causes of PQ Problems

Variable Frequency Drive:

Source: Dranetz Field Handbook

Transient PQ Problems

EXTERNAL:

- Utility switching or outages
- Vehicle hits
- "Galloping conductors"
- Poor or inadequate grounding
- Intermittent connections
- Voltage reductions
- etc.

#1 Transient

Lightning

Isokeraunic Map

Thunderstorm days

- at the service
- at the panel board
- at the load

at the service level

Category C devices

150 kA per mode

at the feeder level Category B devices 75 kA per mode

at the device level

Category A devices

25 kA per mode

 Leads as short as possible

All-mode protection: φ-φ, φ-G, φ-N, N-G
Listed to UL 1449, Version 2
High Joule rating
Have filtering, fuses, indication
Must be well-grounded

Other Causes of PQ Problems

- Shared circuits
- Too many outlets / uses per circuit
- Inadequate neutrals
- Poor or inadequate grounding
- Intermittent connections
- Standard equipment and wiring
- etc.

Better wiring and grounding will prevent or alleviate most problems at little cost

(Power quality need not be expensive)

National Electrical Code

Good starting point But not usually sufficient for power quality

More Useful

ANSI/IEEE 1100 Recommended Practices are needed for power quality.

Elements of Power Quality Design

- System Grounding (earthing)
- Equipment Grounding (bonding)
- Neutral Sizing
- General Wiring
- Extra Effort Steps

System Grounding

Needed for:

- Establishing a voltage reference
- Discharge high transient voltages (esp. lightning)
- Static Discharge
- Personnel Safety

To Meet Code

To Meet Article 250-50(a)(2):

Water Pipe and 2 ground rods, even if result exceeds 25 ohms.

For Power Quality

Desired Grounding Resistance:

- 5 ohms or less desired for power quality
- Many mfgrs. specify <u>under 2 ohms</u>
- IEEE Std. 142 recommends 1-5 ohms (Green Book)

Low Impedance

- Ring ground
- Ufer Grounds
- Multiple, deep rods
- Moisture (bentonite)

Deep Earth Electrodes

How to Minimize Resistance:

Preferred spacing = 2 X rod length

Mt. Washington, NH

Before:

3-4 major events in2 years (lightning)\$120,000 avg damage per year

Plus lost ad revenue (station downtime)

Source: Ground Testing, Inc.

Difficult Case: Mt. Washington, NH

Two 600 feet deep copper rods placed in 8 inch diameter well casings

Backfill with bentonite grout

Interconnect with 500 kcmil copper cable

- 500 kcmil ring grounds
- 2-600 ft deep vertical
 electrodes

After:

No damages or disruptions in 5 years since improved grounding

Source: R. Cushman, Chief Engineer, WMTW-TV

Las Vegas Casino/Hotel

- Each slot machine is a computer
- High Resistivity Soil
- High Cost of Failure

System Grounding

Las Vegas Casino Hotel

Interior ground bus for easy connections:

Source: Allegro Corp.

"Halo" Grounding

Interior "halo" ground for easy connections:

Note large radii bends

Source: Power & System Innovations,

Ground Loops

Earth cannot be ground path:

There should be ONE central point connecting the interior wiring to the ONE exterior grounding electrode system

Recommended Wiring Practice

Sensitive loads should be separated: Separate branch circuits Separate panelboards Separate feeders Separate transformers

Isolate Sensitive Loads

source: IEEE Emerald Book

Isolate Sensitive Loads

b) FAIR!

Isolate Sensitive Loads

c) BETTER!

source: IEEE Emerald Book

Safely Handling Harmonics

Use double size neutral or one neutral per phase conductor

Safely Handling Harmonics

Safely Handling Harmonics

Use K- Rated transformers, panelboards.

Current Design Standards:

- Separate computer feeders, panels, and branch circuits
- 4 outlets per 20 amp. Branch circuit

Current Design Standards:

- 10 ohms or less grounding resistance
- Double (and sometimes triple) neutrals
- K-rated transformers
- Always a separate grounding conductor
- Always copper conductors

M.I.T. Basic Grounding Layout

Cost for all PQ improvements:

Adds about 1 1/2% added to the overall cost of construction, but....

Never has to revisit infrastructure for foreseeable future

Case Study: "Clean Grounds"

McAfee Tool and Die

Case Study: McAfee Tool & Die

Case Study: McAfee Tool & Die

Case Study: McAfee Tool & Die

Case Study: McAfee Tool & Die

"Supplemental" electrodes abandoned

Case Study: McAfee Tool & Die

Everything bonded to building steel using 4/0 copper

Cabinets retrofitted with 4/0 copper bonding, aluminum removed

Case Study: 911 Center Retrofit

4/0 AWG ring ground completely surrounds building

Source: Power & System Innovations, Inc.

Case Study: 911 Center

Tower on municipal land Built by Telco Shared with emergency services

Source: Power & System Innovations, Inc

Case Study: 911 Center

Coax braid grounding

Note location on <u>vertical</u> run

Vertical Coax Grounding

29X lightning cable then connects to 4/0 vertical to 4- 50 ft. electrodes under tower

Firewall

Outside copper firewall 4/0 vertical to ring ground

Halo Ground

Inside copper firewall 4/0 connects to "halo" and grounding electrode system

Note large radii

Every Joint Jumpered

Equipment Grounds

Every joint, tray and cabinet bonded and jumped with #2 to plate, then 4/0 connects to "halo"

TVSS

TVSS at the service and all branch panels

All cabinets bonded with copper jumpers then to ring ground with 4/0 copper

Grounding Layout

4-50' rods under tower

Suncoast Schools FCU

ATM Network

TVSS Worked

Examples of TVSS

Good Grounding Mandatory

Review

Recommended practices

Getting toward the end

Low R Grounding

Network of Air Terminals

System Grounding

To the Ground Ring:

- -multiple ground rods
- -tie-in building steel
- -connect all metallic underground pipes
- -lightning protection system

Surge Suppression

Equipment Grounding Conductor

Use a full-sized EGC and 200% neutral, or separate neutrals

Don't rely on conduit

Equipment Grounding

There should be ONE central point connecting the neutral to the ONE exterior grounding electrode system

No Ground Loops Allowed

EARTH MUST NEVER BE USED AS A CONDUCTOR

Separate wiring

At least, separate circuits

If possible: separate panels separate feeders separate services shielded isolation trans. UPS

Handle Harmonics

Interior:

- Always use a full size copper equipment grounding conductor
- Use a 200% rated neutral
- Use harmonic rated panels

General Wiring

Interior:

- Limit receptacles to 3-6 per circuit
- Limit voltage drop to <3% or less
 - wire gage
 - circuit length
- Check for ground loops
- Check for N-G bonds

General Wiring

Interior:

- Bolt-in circuit
 breakers
- Twist-lock plugs/receptacles

Use proper connections

Double Nuts and Lockwashers

General Wiring

Shielded isolation

transformer

or

K-rated transformer (K-13 or higher)

K

General Wiring

Harmonic rated panels

System Grounding

Bentonite is the only recommended backfill

Be wary of anything containing graphite

Retest System Ground

Retest resistance of grounding electrode system annually (or more often as conditions dictate).

Use fall-of-potential method if possible

People make changes to the electrical system all the time

They seldom document the changes

You can exceed the Code, but don't violate the Code!

"There should be no reason why you cannot design for power quality and still stay within the Code" –

Warren Lewis

Copper Development Association Inc.

Before I go....

Free Educational Materials

applications, such as teleop

Use a conner strid sola

Access floor used for equipotential grid i

0 N

Thanks for your attention.

David Brender

dbrender@cda.copper.org