Association of Energy Engineers (AEE) Jarred Walker, Sales Engineer

Agenda

- About RAE Corporation
 - Our history and experience
- About Technical Systems
 - The Gray Space
- Chiller Operation and Selection
 - Basis of selection
 - Fundamental chiller design
- Energy Efficient Chiller Solutions
 - Components
 - Economizer Coils
 - Evaporative Cooled Condenser
 - Adiabatic Chillers

RAE Corporation

- RAE Coils Commercial and Industrial coils for the replacement and OEM markets
- Century Refrigeration Low temperature refrigeration equipment (-40 to +40 refrigeration systems)
- RSI Refrigeration systems for the bulk storage market
- Technical Systems Built to Order
 Mechanical cooling equipment

Technical Systems & RAE Corporation

DIVISIONS OF RAE CORPORATION

Technical Systems Energy Efficient Products

Built to Order Energy efficient equipment

- Fluid Coolers, Remote Condensers, Condensing Units, Chillers
- Air Cooled and Evaporative Cooled Options
- APEXTM Evaporative Pre-Cooling Technology

Systems level approach

- Understand systems and refrigeration
- Large swings in loads (MRI, Linac's, production batch processes)
- Dehumidification & environment control (Clean rooms, Pharma)
- Year round cooling (Data centers)

"Mission Critical" When loss of cooling means a loss of revenue or loss of life

 Data centers, Pharma production, Manufacturing processes, MRI and Linacs, Class I, Div II Explosion Resistant applications

5

Hospital care facilities, operating room cooling systems

THE GRAYSPACE.

Somewhere in between standard off-the-shelf products and start-from-scratch white paper designs.

That is where you find Technical Systems.

WE ARE SOLUTIONS BUILT TO ORDER.

When GRAY Matters

- "Mission Critical" When loss of cooling means a loss of revenue or loss of life
 - Data centers, Pharma production, Manufacturing processes, MRI and Linacs, Class I, Div II Explosion Resistant applications
 - Hospital care facilities, operating room cooling systems

Chiller considerations

- Application
 - Comfort or Process
 - 24/7 365 Operation
 - Clean or Dirty Environment
 - Noise and/or Efficiency Requirements
 - Physical Restrictions
- Cost Considerations
 - Life Cycle Cost
 - Initial Cost of Equipment
 - Installation Cost
 - Operational Costs
 - Maintenance Costs

Chiller Operation

9

Increasing Efficiency

- Use effective capacity control method
 - Match compressor output to actual load as closely as possible.
- Reduce compressor lift (decrease delta P on suction to discharge pressure)
 - Increases output and moves more refrigerant
 - Reduces work energy and amps
- Increase sub-cooling
 - Increases the enthalpy change of the refrigerant without increasing lift
- Reduce energy of other system components
 - Condenser Fans
 - Compressors
- Water Side Economizer Coils
 - Take advantage of low ambient conditions

P-H Diagram

- Increased sub-cooling from 10 to 20°F
- Reduce condenser temp from 120 to 100°F

Reduced Lift

Condenser

D 140°

C B

120°

Compressor

CONSTANT TEMP of The Second Se

Energy Efficient Chiller Solutions

Components

12

Condenser Fan Control

Fan Cycling

- Fans cycled on / off in stages according to head pressure
- Swings in compressor lift affect system operation.
- Noise is more noticeable.
- Frequent motor starting wears out faster

Variable Speed Drives

- Fan speed reduced as head pressure drops to minimum levels
- 10% reduction in speed = 33% reduction in power
- Stabilizes compressor operation

Electrically Commutated (EC) Motors

- Integral AC / DC converter.
- Permanent magnet motors remove induction losses.
- Digital controller optimizes operation for minimal energy
- +95% motor efficiency

Scroll Compressor Control

- Tandem or Trio Compressors
- Digital Scroll
 - Internal piping and control valve allows scrolls to separate.
 - Controller pulses solenoid in 20 second cycles
 - Limited in size (15hp max single, 30hp tandem)

- Variable Speed Compressor
 - VFD matched to compressors. Drive signal by unit controller.
 - 30-75hz typical range (50-125%) for standard AC motors
 - Speed controlled directly by LAT or LFT. Accurate load tracking.
 - Reduce energy by reducing motor speed

Screw Compressor

- Low temp applications
- Large capacity machines
- Slide unloading
- VFD motor

Energy Efficient Chiller Solutions

Water Side Economizer Coils

Air Cooled Economizer Chillers

- Energy savings for any "year round" process cooling
- Integral free cooling coils use ambient air to pre-cool fluid before entering the evaporator
- Condenser fans are used for both condensing and free cooling

Air Cooled Economizer Chillers

- Capacity range of 10-300 Tons
- Both Partial and Full free cooling
- Components (fans, coils) designed to operate together
 - Size coils for actual winter load required
 - Fans designed to handle additional coil rows
 - Independent coil casings no cross heat transfer, easier service and maint.
- UL and ETL listed

Energy Efficient Chiller Solutions

Evaporative Cooling

19

Evaporative Condensing Chillers

- Evaporating water cools the tubes. Condenser is rated at the wet bulb temp instead of dry bulb.
 - Cooler refrigerant condensing temperature and pressure
 - Lower condensing pressure results in reduced compressor horse power
 - Lower pressure = less energy
- Up to +30% reduced energy
- 30-40% Lower MCA amps (smaller wire, breakers, ect.)
- Longer compressor life
- Smaller footprint
- Great for climates with low RH

Evap Condensing Chiller Comparison

Air Cooled

- Performance
 - 95°F dry bulb
 - 183 Tons
 - 124°F Cond Temp (182 psi)
 - Comp EER = 11.5 (1.04 kW / ton)
 - Unit EER = 10.4 (1.15 kW / ton)
 - MCA amps: 405 (MOP: 500)
 - Wire Feed MCM 600
 - Total Max kW: 210 kW
- Components
 - Rated at 0 Altitude
 - 240 Compressor HP
 - (18) 1HP 28" Propeller Fans
 - 18 Fan HP
 - Total HP = 258
 - Total CFM = 152,439
- Foot Print = 96W x 324L x 102H
 - (216 ft2)

Evap. Condensing

- Performance
 - 78°F wet bulb
 - 185 Tons
 - 101°F Cond Temp (124 psi)
 - Comp EER = 15.1 (0.80 kW / ton)
 - Unit EER = 14 (0.86 kW / ton)
 - MCA amps: 266 (MOP: 350)
 - Wire Feed MCM 300
 - Total Max kW: 159 kW
- Components
 - Not impacted by altitude
 - 180 Compressor HP
 - (1) 10HP Fan Motor
 - (1) 1 ½ HP Spray Pump
 - Total HP = 192
 - Total CFM = 35,700
- Foot Print = 120W x 204L x 110H
 - (170 ft2)

Energy Efficient Chiller Solutions

Evaporative Cooling

- Adiabatic Pre-cooling Evaporative X-change
 - Combines evaporative cooling with simplicity of dry air cooled equipment
 - High efficiency performance with reduced operations costs and maintenance
- Evaporative section humidifies and cools ambient air as much as 20°F or more
 - No moisture carryover. Heat transfer coil remains completely dry. No coil scaling.
- Able to run dry when dry bulb reaches the design wet-bulb (75-78°F for Ohio.)

- Municipal city water supplies are best.
 - Avoid RO, DI, and softened water. Simple is best.
- Actual site water sample analyzed during order
- Self contained controls via microprocessor
 - Sump water conductivity control with bleed and feed
 - Automatic sump drain based on ambient. No risk of freeze.
 - Daily dry out cycle controls biological growth
- Circulated water design pushes dirt into sumps (1.5 GPM / sq. Ft.)
- Less maintenance than misted or "once through" systems
- Hardened edge coating on media
 - Resists algae growth
 - Able to be brushed and cleaned

- Save Electrical Energy When It Costs the Most
 - Savings are best when peak demand charges are highest
 - Combine with VFD or EC fans for optimal efficiency
- Colder air means less airflow, reduced fan HP, lower sound.
- Water usage optimized for minimal utilities
 - 6,900 Hours (80%) at or below 70°F DB (Denver CO)

- 120 Ton system
 - Tandem R-410a Scrolls
- 105° DB and 65°F WB... 5400 FT Elevation... 45°F Sat Suction
 - Evaporative cooled includes tower fan and pump

	Std. Air Cooled	Evap Cooled	Air Cooled APEX
Full Load UNIT kW / Ton:	1.3	0.77	<u>0.81</u>
Total Unit KW:	160 kW	82 kW	<u>96 kW</u>
Unit MCA:	290 amps	229 amps	<u>229 amps</u>
Breaker Feed:	350 amp	250 amp	<u>250 amp</u>
Single Point Power Wire Size (75°C):	(1) 350 MCM – 3" Conduit	(1) #4/0 – 2" Cond	(1) #4/0 – 2" Cond
# Hours Running Dry:	Zero	Few or Zero	<u>6,900 (80%)</u>
Run Dry Temperature:	93°F	Below Zero	+70°F DB

- Simplicity of air cooled, yet efficiency near water cooled.
- No chemical treatment. Minimal maintenance over air cooled.

Conclusion

• Efficiency is defined as:

- The ability to produce a desired effect, product, etc. with a minimum of effort, expense, or waste. (Collins English Dictionary)
- Potential Efficiency Gains in Chiller Selection
 - Reduce Compressor Lift
 - Increase Sub cooling
 - Increase Turndown Capability
 - Increase Component Efficiency
 - Lower Ambient Air Temperature with Adiabatic Cooling
- Increased Chiller Efficiency Leads To
 - Savings On Electricity Expenses
 - Reduced Strain on Power Grid
 - Smaller Environmental Footprint

